Abstract: Photonic Crystal Fiber (PCF) uses are no longer limited to telecommunication only rather it is now used for many sensors-based fiber optics application, medical science, space application and so on. In this paper, the authors have proposed a microstructure PCF that is designed by using Finite Element Method (FEM) based software. Besides designing, authors have discussed the necessity of the characteristics that it poses for some specified applications because it is not possible to have all good characteristics from a single PCF. Proposed PCF shows the property of ultra-high birefringence (0.0262 at 1550 nm) which is more useful for sensor based on fiber optics. The non-linearity of this fiber is 50.86 w-1km-1 at 1550 nm wavelength which is very high to guide the light through the core tightly. For Perfectly Matched Boundary Layer (PML), 0.6 μm diameter is taken. This design will offer the characteristics of Nonzero-Dispersion-Shifted Fiber (NZ-DSF) for 450 nm waveband. Since it is a software-based design and no practical evaluation has made, 2% tolerance is checked and the authors have found very small variation of the characteristics.
Abstract: In this work, two mixtures with equal concentrations of 1) 4ꞌ-(6-(4-(pentylamino) methyl)-3-hydroxyphenoxy) hexyloxy) biphenyl-4-carbonitrile+-4-((4-(hexyloxy) benzylidene) amino) phenyl 4-butoxy benzoate and 2) 4ꞌ - (6-(4-(hexylamino) methyl)-3-hydroxyphenoxy) hexyloxy) biphenyl-4-carbonitrile+-4-((4-(octyloxy) benzylidene) amino) phenyl 4-butoxy benzoate, have been prepared. The transition temperature and optical texture are observed by using thermal microscopy. Density and birefringence studies are carried out on the above liquid crystalline mixtures. Using density and refractive indices data, the molecular polarizabilities are evaluated by using well-known Vuks and Neugebauer models. The molecular polarizability is also evaluated theoretically by Lippincott δ function model. The results reveal that the polarizability values are same in both experimental and theoretical methods.
Abstract: In this paper, we have reported birefringence
manipulation in regenerated high birefringent fiber Bragg grating
(RPMG) by using CO2 laser annealing method. The results indicate
that the birefringence of RPMG remains unchanged after CO2 laser
annealing followed by slow cooling process, but reduced after fast
cooling process (~5.6×10-5). After a series of annealing procedures
with different cooling rates, the obtained results show that slower the
cooling rate, higher the birefringence of RPMG. The volume, thermal
expansion coefficient (TEC) and glass transition temperature (Tg)
change of stress applying part in RPMG during cooling process are
responsible for the birefringence change. Therefore, these findings
are important to the RPMG sensor in high and dynamic temperature
environment. The measuring accuracy, range and sensitivity of
RPMG sensor is greatly affected by its birefringence value. This
work also opens up a new application of CO2 laser for fiber annealing
and birefringence modification.
Abstract: The analytical bright two soliton solution of the 3-
coupled nonlinear Schrödinger equations with variable coefficients in
birefringent optical fiber is obtained by Darboux transformation
method. To the design of ultra-speed optical devices, Soliton
interaction and control in birefringence fiber is investigated. Lax pair
is constructed for N coupled NLS system through AKNS method.
Using two-soliton solution, we demonstrate different interaction
behaviors of solitons in birefringent fiber depending on the choice of
control parameters. Our results shows that interactions of optical
solitons have some specific applications such as construction of logic
gates, optical computing, soliton switching, and soliton amplification
in wavelength division multiplexing (WDM) system.
Abstract: A new method for determining the distribution of
birefringence and linear dichroism in optical polymer materials is
presented. The method is based on the use of polarizationholographic
diffraction grating that forms an orthogonal circular basis
in the process of diffraction of probing laser beam on the grating. The
intensities ratio of the orders of diffraction on this grating enables the
value of birefringence and linear dichroism in the sample to be
determined. The distribution of birefringence in the sample is
determined by scanning with a circularly polarized beam with a
wavelength far from the absorption band of the material. If the
scanning is carried out by probing beam with the wavelength near to
a maximum of the absorption band of the chromophore then the
distribution of linear dichroism can be determined. An appropriate
theoretical model of this method is presented. A laboratory setup was
created for the proposed method. An optical scheme of the laboratory
setup is presented. The results of measurement in polymer films with
two-dimensional gradient distribution of birefringence and linear
dichroism are discussed.
Abstract: Propagation of solitons in single-mode birefringent fibers is considered under the presence of third-order dispersion (TOD). The behavior of two neighboring solitons and their interaction is investigated under the presence of third-order dispersion with different group velocity dispersion (GVD) parameters. It is found that third-order dispersion makes the resultant soliton to deviate from its ideal position and increases the interaction between adjacent soliton pulses. It is also observed that this deviation due to third-order dispersion is considerably small when the optical pulse propagates at wavelengths relatively far from the zerodispersion. Modified coupled nonlinear Schrödinger-s equations (CNLSE) representing the propagation of optical pulse in single mode fiber with TOD are solved using split-step Fourier algorithm. The results presented in this paper reveal that the third-order dispersion can substantially increase the interaction between the solitons, but large group velocity dispersion reduces the interaction between neighboring solitons.
Abstract: Nylon 6-clay hybrid/neat nylon 6, sheath/core
bicomponent nanocomposite fibers containing 4 wt% of clay in
sheath section were melt spun at different take-up speeds. Their
orientation and crystalline structure were compared to those of neat
nylon 6 fibers. Birefringence measurements showed that the
orientation development in sheath and core parts of bicomponent
fibers was different. Crystallinity results showed that clay did not act
as a nucleating agent for bicomponent fibers. The neat nylon 6 fiber
had a smooth surface while striped pattern was appeared on the
surface of bicomponent fiber containing clay due to thermal
shrinkage of the core part.
Abstract: The effect of thermally induced stress on the modal
properties of highly elliptical core optical fibers is studied in this
work using a finite element method. The stress analysis is carried out
and anisotropic refractive index change is calculated using both the
conventional plane strain approximation and the generalized plane
strain approach. After considering the stress optical effect, the modal
analysis of the fiber is performed to obtain the solutions of
fundamental and higher order modes. The modal effective index,
modal birefringence, group effective index, group birefringence, and
dispersion of different modes of the fiber are presented. For
propagation properties, it can be seen that the results depend much on
the approach of stress analysis.
Abstract: Mung bean starches were subjected to heat-moisture treatment (HMT) by different moisture contents (15%, 20%, 25%, 30% and 35%) at 120Ôäâ for 12h. The impact on the yields of resistant starch (RS), microstructure, physicochemical and functional properties was investigated. Compared to native starch, the RS content of heat-moisture treated starches increased significantly. The RS level of HMT-20 was the highest of all the starches. Birefringence was displayed clear at the center of native starch. For HMT starches, pronounced birefringence was exhibited on the periphery of starch granules; however, birefringence disappeared at the centre of some starch granules. The shape of HMT starches hadn-t been changed and the integrity of starch granules was preserved for all the conditions. Concavity could be observed on HMT starches under scanning electronic microscopy. After HMT, apparent amylose contents were increased and starch macromolecule was degraded in comparison with those of native starch. There was a reduction in swelling power on HMT starches, but the solubility of HMT starches was higher than that of native starch. Both of native and HMT starches showed A-type X-ray diffraction pattern. Furthermore, there is a higher intensity at the peak of 15.0 and 22.9 Å than those of native starch.