Abstract: This research proposes an interpretation of the Bouguer’ gravity anomaly data of some parts of Sokoto basin for the estimation of crustal thickness. The study area is bounded between latitudes 1100′0″N and 1300′0″N, and longitudes 400′0″E and 600′0″E that covered Koko, Jega, B/Kebbi, Argungu, Lema, Bodinga, Tamgaza, Gunmi,Daki Takwas, Dange, Sokoto, Ilella, T/Mafara, Anka, Maru, Gusau, K/Namoda, and Sabon Birni within Sokoto, Kebbi and Zamfara state respectively. The established map of the study area was digitized in X, Y and Z format using excel software package and the digitized data were processed using Surfer version 13 software. The Moho and Conrad depths based on a relationship between Bouguer’ gravity anomaly determined crustal thickness were estimated as 35 to 37 km and 19 to 21 km, respectively. The crustal region has been categorized into: Crustal thinning zone that is the region with high gravity anomaly value due to its greater geothermal energy and also Crustal thickening zone which the region with low anomaly values due to its lower geothermal energy. Birnin kebbi, Jega, Sokoto were identified as the region of hydrocarbon potential with an estimate of 35 km thickness within the crustal region which is referred to as crustal thickening as a result of its low but sufficient geothermal energy to decompose organic matter within the region to form hydrocarbons.
Abstract: This research is an experimental research which was done about microbial fuel cells in order to study them for electricity generating and wastewater treatment. These days, it is very important to find new, clean and sustainable ways for energy supplying. Because of this reason there are many researchers around the world who are studying about new and sustainable energies. There are different ways to produce these kind of energies like: solar cells, wind turbines, geothermal energy, fuel cells and many other ways. Fuel cells have different types one of these types is microbial fuel cell. In this research, an MFC was built in order to study how it can be used for electricity generating and wastewater treatment. The microbial fuel cell which was used in this research is a reactor that has two tanks with a catalyst solution. The chemical reaction in microbial fuel cells is a redox reaction. The microbial fuel cell in this research is a two chamber MFC. Anode chamber is an anaerobic one (ABR reactor) and the other chamber is a cathode chamber. Anode chamber consists of stabilized sludge which is the source of microorganisms that do redox reaction. The main microorganisms here are: Propionibacterium and Clostridium. The electrodes of anode chamber are graphite pages. Cathode chamber consists of graphite page electrodes and catalysts like: O2, KMnO4 and C6N6FeK4. The membrane which separates the chambers is Nafion117. The reason of choosing this membrane is explained in the complete paper. The main goal of this research is to generate electricity and treating wastewater. It was found that when you use electron receptor compounds like: O2, MnO4, C6N6FeK4 the velocity of electron receiving speeds up and in a less time more current will be achieved. It was found that the best compounds for this purpose are compounds which have iron in their chemical formula. It is also important to pay attention to the amount of nutrients which enters to bacteria chamber. By adding extra nutrients in some cases the result will be reverse. By using ABR the amount of chemical oxidation demand reduces per day till it arrives to a stable amount.
Abstract: As the use of geothermal energy grows internationally
more effort is required to monitor and protect areas with rare and
important geothermal surface features. A number of approaches are
presented for developing and calibrating numerical geothermal
reservoir models that are capable of accurately representing
geothermal surface features. The approaches are discussed in the
context of cases studies of the Rotorua geothermal system and the
Orakei-korako geothermal system, both of which contain important
surface features. The results show that models are able to match the
available field data accurately and hence can be used as valuable
tools for predicting the future response of the systems to changes in
use.
Abstract: Energy generated by the force of water in hydropower
can provide a more sustainable, non-polluting alternative to fossil
fuels, along with other renewable sources of energy, such as wind,
solar and tidal power, bio energy and geothermal energy. Small scale
hydroelectricity in Iran is well suited for “off-grid" rural electricity
applications, while other renewable energy sources, such as wind,
solar and biomass, can be beneficially used as fuel for pumping
groundwater for drinking and small scale irrigation in remote rural
areas or small villages. Small Hydro Power plants in Iran have very
low operating and maintenance costs because they consume no fossil
or nuclear fuel and do not involve high temperature processes. The
equipment is relatively simple to operate and maintain. Hydropower
equipment can adjust rapidly to load changes. The extended
equipment life provides significant economic advantages. Some
hydroelectric plants installed 100 years ago still operate reliably. The
Polkolo river is located on Karun basin at southwest of Iran. Situation
and conditions of Polkolo river are evaluated for construction of
small hydropower in this article. The topographical conditions and
the existence of permanent water from springs provide the suitability
to install hydroelectric power plants on the river Polkolo. The
cascade plant consists of 9 power plants connected with each other
and is having the total head as 1100m and discharge about 2.5cubic
meter per second. The annual production of energy is 105.5 million
kwh.
Abstract: The development incompatible with environment cannot be sustainable. Using renewable energy sources such as solar energy, geothermal energy and wind energy can make sustainable development in a region. Iran has a lot of renewable and nonrenewable energy resources. Since Iran has a special geographic position, it has lot of solar and wind energy resources. Both solar and wind energy are free, renewable and adaptable with environment. The study of 10 year wind data in Iranian South coastal and Islands synoptic stations shows that the production of wind power electricity and water pumping is possible in this region. In this research, we studied the local and temporal distribution of wind using three – hour statistics of windspeed in Iranian South coastal and Islands synoptic stations. This research shows that the production of wind power electricity is possible in this region all the year.
Abstract: Design and land use are closely linked to the
energy efficiency levels for an urban area. The current city
planning practice does not involve an effective land useenergy
evaluation in its 'blueprint' urban plans. The study
proposed an appraisal method that can be embedded in GIS
programs using five planning criteria as how far a planner can
give away from the planning principles (criteria) for the most
energy output s/he can obtain. The case of Balcova, a district
in the Izmir Metropolitan area, is used conformingly for
evaluating the proposed master plan and the geothermal
energy (heating only) use for the concern district.
If the land use design were proposed accordingly at-most
energy efficiency (a 30% obtained), mainly increasing the
density around the geothermal wells and also proposing more
mixed use zones, we could have 17% distortion (infidelity to
the main planning principles) from the original plan. The
proposed method can be an effective tool for planners as
simulation media, of which calculations can be made by GIS
ready tools, to evaluate efficiency levels for different plan
proposals, letting to know how much energy saving causes
how much deviation from the other planning ideals. Lower
energy uses can be possible for different land use proposals
for various policy trials.