Fractal Dimension of Breast Cancer Cell Migration in a Wound Healing Assay

Migration in breast cancer cell wound healing assay had been studied using image fractal dimension analysis. The migration of MDA-MB-231 cells (highly motile) in a wound healing assay was captured using time-lapse phase contrast video microscopy and compared to MDA-MB-468 cell migration (moderately motile). The Higuchi fractal method was used to compute the fractal dimension of the image intensity fluctuation along a single pixel width region parallel to the wound. The near-wound region fractal dimension was found to decrease three times faster in the MDA-MB- 231 cells initially as compared to the less cancerous MDA-MB-468 cells. The inner region fractal dimension was found to be fairly constant for both cell types in time and suggests a wound influence range of about 15 cell layer. The box-counting fractal dimension method was also used to study region of interest (ROI). The MDAMB- 468 ROI area fractal dimension was found to decrease continuously up to 7 hours. The MDA-MB-231 ROI area fractal dimension was found to increase and is consistent with the behavior of a HGF-treated MDA-MB-231 wound healing assay posted in the public domain. A fractal dimension based capacity index has been formulated to quantify the invasiveness of the MDA-MB-231 cells in the perpendicular-to-wound direction. Our results suggest that image intensity fluctuation fractal dimension analysis can be used as a tool to quantify cell migration in terms of cancer severity and treatment responses.

A Novel Method for Blood Glucose Measurement by Noninvasive Technique Using Laser

A method and apparatus for noninvasive measurement of blood glucose concentration based on transilluminated laser beam via the Index Finger has been reported in this paper. This method depends on atomic gas (He-Ne) laser operating at 632.8nm wavelength. During measurement, the index finger is inserted into the glucose sensing unit, the transilluminated optical signal is converted into an electrical signal, compared with the reference electrical signal, and the obtained difference signal is processed by signal processing unit which presents the results in the form of blood glucose concentration. This method would enable the monitoring blood glucose level of the diabetic patient continuously, safely and noninvasively.

Data Mining Techniques in Computer-Aided Diagnosis: Non-Invasive Cancer Detection

Diagnosis can be achieved by building a model of a certain organ under surveillance and comparing it with the real time physiological measurements taken from the patient. This paper deals with the presentation of the benefits of using Data Mining techniques in the computer-aided diagnosis (CAD), focusing on the cancer detection, in order to help doctors to make optimal decisions quickly and accurately. In the field of the noninvasive diagnosis techniques, the endoscopic ultrasound elastography (EUSE) is a recent elasticity imaging technique, allowing characterizing the difference between malignant and benign tumors. Digitalizing and summarizing the main EUSE sample movies features in a vector form concern with the use of the exploratory data analysis (EDA). Neural networks are then trained on the corresponding EUSE sample movies vector input in such a way that these intelligent systems are able to offer a very precise and objective diagnosis, discriminating between benign and malignant tumors. A concrete application of these Data Mining techniques illustrates the suitability and the reliability of this methodology in CAD.

An Investigative Study into Observer based Non-Invasive Fault Detection and Diagnosis in Induction Motors

A new observer based fault detection and diagnosis scheme for predicting induction motors- faults is proposed in this paper. Prediction of incipient faults, using different variants of Kalman filter and their relative performance are evaluated. Only soft faults are considered for this work. The data generation, filter convergence issues, hypothesis testing and residue estimates are addressed. Simulink model is used for data generation and various types of faults are considered. A comparative assessment of the estimates of different observers associated with these faults is included.

Time and Frequency Domain Analysis of Heart Rate Variability and their Correlations in Diabetes Mellitus

Diabetes mellitus (DM) is frequently characterized by autonomic nervous dysfunction. Analysis of heart rate variability (HRV) has become a popular noninvasive tool for assessing the activities of autonomic nervous system (ANS). In this paper, changes in ANS activity are quantified by means of frequency and time domain analysis of R-R interval variability. Electrocardiograms (ECG) of 16 patients suffering from DM and of 16 healthy volunteers were recorded. Frequency domain analysis of extracted normal to normal interval (NN interval) data indicates significant difference in very low frequency (VLF) power, low frequency (LF) power and high frequency (HF) power, between the DM patients and control group. Time domain measures, standard deviation of NN interval (SDNN), root mean square of successive NN interval differences (RMSSD), successive NN intervals differing more than 50 ms (NN50 Count), percentage value of NN50 count (pNN50), HRV triangular index and triangular interpolation of NN intervals (TINN) also show significant difference between the DM patients and control group.

Design and Fabrication of a Low Cost Heart Monitor using Reflectance Photoplethysmogram

This paper presents a low cost design of heart beat monitoring device using reflectance mode PhotoPlethysmography (PPG). PPG is known for its simple construction, ease of use and cost effectiveness and can provide information about the changes in cardiac activity as well as aid in earlier non-invasive diagnostics. The proposed device is divided into three phases. First is the detection of pulses through the fingertip. The signal is then passed to the signal processing unit for the purpose of amplification, filtering and digitizing. Finally the heart rate is calculated and displayed on the computer using parallel port interface. The paper is concluded with prototyping of the device followed by verification procedure of the heartbeat signal obtained in laboratory setting.

Optical Coherence Tomography Combined with the Confocal Microscopy Method and Fluorescence for Class V Cavities Investigations

The purpose of this study is to present a non invasive method for the marginal adaptation evaluation in class V composite restorations. Standardized class V cavities, prepared in human extracted teeth, were filled with Premise (Kerr) composite. The specimens were thermo cycled. The interfaces were examined by Optical Coherence Tomography method (OCT) combined with the confocal microscopy and fluorescence. The optical configuration uses two single mode directional couplers with a superluminiscent diode as the source at 1300 nm. The scanning procedure is similar to that used in any confocal microscope, where the fast scanning is enface (line rate) and the depth scanning is much slower (at the frame rate). Gaps at the interfaces as well as inside the composite resin materials were identified. OCT has numerous advantages which justify its use in vivo as well as in vitro in comparison with conventional techniques.

Biological Characterization of the New Invasive Brine Shrimp Artemia franciscana in Tunisia: Sabkhet Halk El-Menzel

Endemic Artemia franciscana populations can be found throughout the American continent and also as an introduced specie in several country all over the world, such as in the Mediterranean region where Artemia franciscana was identified as an invasive specie replacing native Artemia parthenogenetica and Artemia salina. In the present study, the characterization of the new invasive Artemia franciscana reported from Sabkhet Halk El-Menzel (Tunisia) was done based on the cysts biometry, nauplii instar-I length, Adult sexual dimorphism and fatty acid profile. The mean value of the diameter of non-decapsulated and decapsulated cysts, chorion thickness and naupliar length is 235.8, 226.3, 4.75 and 426.8 μm, respectively. Sexual dimorphism for adults specimen showed that maximal distance between compound eyes, diameter for compound eyes, length of first antenna and the abdomen length compared to the total body length ratio, are the most important variables for males and females discrimination with a total contribution of 62.39 %. The analysis of fatty acid methyl esters profile of decapsulated cysts resulted in low levels of linolenic acid (LLA, C18:3n-3) and high levels of eicosapentaenoic acid (EPA, C20:5n-3) with 3.11 and 11.10 %, respectively. Low quantity of docosahexaenoic acid (DHA, 22:6n-3) was also observed with 0.17 mg.g-1 dry weight.

A New Rigid Fistulectomy Set for Minimally Invasive “Core-Out“ Excision of High Anal Fistulas

In this article, we propose a new surgical device for circumferentially excision of high anal fistulas in a minimally invasive manner. The new apparatus works on the basis of axially rotating and moving a tubular blade along a fistulous tract straightened using a rigid straight guidewire. As the blade moves along the tract, its sharp circular cutting edge circumferentially separates approximately 2.25 mm thickness of tract encircling the rigid guidewire. We used the new set to excise two anal fistulas in a 62-year-old male patient, an extrasphincteric type and a long tract with no internal opening. With regard to the results of this test, the new device can be considered as a sphincter preserving mechanism for treatment of high anal fistulas. Consequently, a major reduction in the risk of fecal incontinence, recurrence rate, convalescence period and patient morbidity may be achieved using the new device for treatment of fistula-in-ano.

In Search of Robustness and Efficiency via l1− and l2− Regularized Optimization for Physiological Motion Compensation

Compensating physiological motion in the context of minimally invasive cardiac surgery has become an attractive issue since it outperforms traditional cardiac procedures offering remarkable benefits. Owing to space restrictions, computer vision techniques have proven to be the most practical and suitable solution. However, the lack of robustness and efficiency of existing methods make physiological motion compensation an open and challenging problem. This work focusses on increasing robustness and efficiency via exploration of the classes of 1−and 2−regularized optimization, emphasizing the use of explicit regularization. Both approaches are based on natural features of the heart using intensity information. Results pointed out the 1−regularized optimization class as the best since it offered the shortest computational cost, the smallest average error and it proved to work even under complex deformations.

En-Face Optical Coherence Tomography and Fluorescence in Evaluation of Orthodontic Interfaces

Bonding has become a routine procedure in several dental specialties – from prosthodontics to conservative dentistry and even orthodontics. In many of these fields it is important to be able to investigate the bonded interfaces to assess their quality. All currently employed investigative methods are invasive, meaning that samples are destroyed in the testing procedure and cannot be used again. We have investigated the interface between human enamel and bonded ceramic brackets non-invasively, introducing a combination of new investigative methods – optical coherence tomography (OCT), fluorescence OCT and confocal microscopy (CM). Brackets were conventionally bonded on conditioned buccal surfaces of teeth. The bonding was assessed using these methods. Three dimensional reconstructions of the detected material defects were developed using manual and semi-automatic segmentation. The results clearly prove that OCT, fluorescence OCT and CM are useful in orthodontic bonding investigations.

Recent Trends in Nonlinear Methods of HRV Analysis: A Review

The linear methods of heart rate variability analysis such as non-parametric (e.g. fast Fourier transform analysis) and parametric methods (e.g. autoregressive modeling) has become an established non-invasive tool for marking the cardiac health, but their sensitivity and specificity were found to be lower than expected with positive predictive value

Development of a Non-invasive System to Measure the Thickness of the Subcutaneous Adipose Tissue Layer for Human

To measure the thickness of the subcutaneous adipose tissue layer, a non-invasive optical measurement system (λ=1300 nm) is introduced. Animal and human subjects are used for the experiments. The results of human subjects are compared with the data of ultrasound device measurements, and a high correlation (r=0.94 for n=11) is observed. There are two modes in the corresponding signals measured by the optical system, which can be explained by two-layered and three-layered tissue models. If the target tissue is thinner than the critical thickness, detected data using diffuse reflectance method follow the three-layered tissue model, so the data increase as the thickness increases. On the other hand, if the target tissue is thicker than the critical thickness, the data follow the two-layered tissue model, so they decrease as the thickness increases.

Intervention of Sambucus Nigra Polyphenolic Extract in Experimental Arterial Hypertension

The research focuses on the effects of polyphenols extracted from Sambucus nigra fruit, using an experimental arterial hypertension pattern, as well as their influence on the oxidative stress. The results reveal the normalization of the reduced glutathion concentration, as well as a considerable reduction in the malondialdehide serum concentration by the polyphenolic protection. The rat blood pressure values were recorded using a CODATM system, which uses a non-invasive blood pressure measuring method. All the measured blood pressure components revealed a biostatistically significant (p

A Ring-Shaped Tri-Axial Force Sensor for Minimally Invasive Surgery

This paper presents the design of a ring-shaped tri-axial fore sensor that can be incorporated into the tip of a guidewire for use in minimally invasive surgery (MIS). The designed sensor comprises a ring-shaped structure located at the center of four cantilever beams. The ringdesign allows surgical tools to be easily passed through which largely simplified the integration process. Silicon nanowires (SiNWs) are used aspiezoresistive sensing elementsembeddedon the four cantilevers of the sensor to detect the resistance change caused by the applied load.An integration scheme with new designed guidewire tip structure having two coils at the distal end is presented. Finite element modeling has been employed in the sensor design to find the maximum stress location in order to put the SiNWs at the high stress regions to obtain maximum output. A maximum applicable force of 5 mN is found from modeling. The interaction mechanism between the designed sensor and a steel wire has been modeled by FEM. A linear relationship between the applied load on the steel wire and the induced stress on the SiNWs were observed.

Evaluation of a New Method for Detection of Kidney Stone during Laparoscopy Using 3D Conceptual Modeling

Minimally invasive surgery (MIS) is now being widely used as a preferred choice for various types of operations. The need to detect various tactile properties, justifies the key role of tactile sensing that is currently missing in MIS. In this regard, Laparoscopy is one of the methods of minimally invasive surgery that can be used in kidney stone removal surgeries. At this moment, determination of the exact location of stone during laparoscopy is one of the limitations of this method that no scientific solution has been found for so far. Artificial tactile sensing is a new method for obtaining the characteristics of a hard object embedded in a soft tissue. Artificial palpation is an important application of artificial tactile sensing that can be used in different types of surgeries. In this study, a new method for determining the exact location of stone during laparoscopy is presented. In the present study, the effects of stone existence on the surface of kidney were investigated using conceptual 3D model of kidney containing a simulated stone. Having imitated palpation and modeled it conceptually, indications of stone existence that appear on the surface of kidney were determined. A number of different cases were created and solved by the software and using stress distribution contours and stress graphs, it is illustrated that the created stress patterns on the surface of kidney show not only the existence of stone inside, but also its exact location. So three-dimensional analysis leads to a novel method of predicting the exact location of stone and can be directly applied to the incorporation of tactile sensing in artificial palpation, helping surgeons in non-invasive procedures.

Analysis of Palm Perspiration Effect with SVM for Diabetes in People

In this research, the diabetes conditions of people (healthy, prediabete and diabete) were tried to be identified with noninvasive palm perspiration measurements. Data clusters gathered from 200 subjects were used (1.Individual Attributes Cluster and 2. Palm Perspiration Attributes Cluster). To decrase the dimensions of these data clusters, Principal Component Analysis Method was used. Data clusters, prepared in that way, were classified with Support Vector Machines. Classifications with highest success were 82% for Glucose parameters and 84% for HbA1c parametres.

A Force Measurement Evaluation Tool for Telerobotic Cutting Applications: Development of an Effective Characterization Platform

Sensorized instruments that accurately measure the interaction forces (between biological tissue and instrument endeffector) during surgical procedures offer surgeons a greater sense of immersion during minimally invasive robotic surgery. Although there is ongoing research into force measurement involving surgical graspers little corresponding effort has been carried out on the measurement of forces between scissor blades and tissue. This paper presents the design and development of a force measurement test apparatus, which will serve as a sensor characterization and evaluation platform. The primary aim of the experiments is to ascertain whether the system can differentiate between tissue samples with differing mechanical properties in a reliable, repeatable manner. Force-angular displacement curves highlight trends in the cutting process as well the forces generated along the blade during a cutting procedure. Future applications of the test equipment will involve the assessment of new direct force sensing technologies for telerobotic surgery.