A Signal Driven Adaptive Resolution Short-Time Fourier Transform

The frequency contents of the non-stationary signals vary with time. For proper characterization of such signals, a smart time-frequency representation is necessary. Classically, the STFT (short-time Fourier transform) is employed for this purpose. Its limitation is the fixed timefrequency resolution. To overcome this drawback an enhanced STFT version is devised. It is based on the signal driven sampling scheme, which is named as the cross-level sampling. It can adapt the sampling frequency and the window function (length plus shape) by following the input signal local variations. This adaptation results into the proposed technique appealing features, which are the adaptive time-frequency resolution and the computational efficiency.

Signal Driven Sampling and Filtering a Promising Approach for Time Varying Signals Processing

The mobile systems are powered by batteries. Reducing the system power consumption is a key to increase its autonomy. It is known that mostly the systems are dealing with time varying signals. Thus, we aim to achieve power efficiency by smartly adapting the system processing activity in accordance with the input signal local characteristics. It is done by completely rethinking the processing chain, by adopting signal driven sampling and processing. In this context, a signal driven filtering technique, based on the level crossing sampling is devised. It adapts the sampling frequency and the filter order by analysing the input signal local variations. Thus, it correlates the processing activity with the signal variations. It leads towards a drastic computational gain of the proposed technique compared to the classical one.

An Efficient Classification Method for Inverse Synthetic Aperture Radar Images

This paper proposes an efficient method to classify inverse synthetic aperture (ISAR) images. Because ISAR images can be translated and rotated in the 2-dimensional image place, invariance to the two factors is indispensable for successful classification. The proposed method achieves invariance to translation and rotation of ISAR images using a combination of two-dimensional Fourier transform, polar mapping and correlation-based alignment of the image. Classification is conducted using a simple matching score classifier. In simulations using the real ISAR images of five scaled models measured in a compact range, the proposed method yields classification ratios higher than 97 %.

Some Geodesics in Open Surfaces Classified by Clairaut's Relation

In this paper, we studied some properties of geodesic on some open surfaces: Hyperboloid, Paraboloid and Funnel Surface. Geodesic equation in the v-Clairaut parameterization was calculated and reduced to definite integral. Some geodesics on some open surfaces as mention above were classified by Clairaut's relation.

Coupled Multifield Analysis of Piezoelectrically Actuated Microfluidic Device for Transdermal Drug Delivery Applications

In this paper, design, fabrication and coupled multifield analysis of hollow out-of-plane silicon microneedle array with piezoelectrically actuated microfluidic device for transdermal drug delivery (TDD) applications is presented. The fabrication process of silicon microneedle array is first done by series of combined isotropic and anisotropic etching processes using inductively coupled plasma (ICP) etching technology. Then coupled multifield analysis of MEMS based piezoelectrically actuated device with integrated 2×2 silicon microneedle array is presented. To predict the stress distribution and model fluid flow in coupled field analysis, finite element (FE) and computational fluid dynamic (CFD) analysis using ANSYS rather than analytical systems has been performed. Static analysis and transient CFD analysis were performed to predict the fluid flow through the microneedle array. The inlet pressure from 10 kPa to 150 kPa was considered for static CFD analysis. In the lumen region fluid flow rate 3.2946 μL/min is obtained at 150 V for 2×2 microneedle array. In the present study the authors have performed simulation of structural, piezoelectric and CFD analysis on three dimensional model of the piezoelectrically actuated mcirofluidic device integrated with 2×2 microneedle array.

Quantitative Precipitation Forecast using MM5 and WRF models for Kelantan River Basin

Quantitative precipitation forecast (QPF) from atmospheric model as input to hydrological model in an integrated hydro-meteorological flood forecasting system has been operational in many countries worldwide. High-resolution numerical weather prediction (NWP) models with grid cell sizes between 2 and 14 km have great potential in contributing towards reasonably accurate QPF. In this study the potential of two NWP models to forecast precipitation for a flood-prone area in a tropical region is examined. The precipitation forecasts produced from the Fifth Generation Penn State/NCAR Mesoscale (MM5) and Weather Research and Forecasting (WRF) models are statistically verified with the observed rain in Kelantan River Basin, Malaysia. The statistical verification indicates that the models have performed quite satisfactorily for low and moderate rainfall but not very satisfactory for heavy rainfall.

Process Optimization for Enhanced Production of Cell Biomass and Metabolites of Fluorescent Pseudomonad R81

The fluorescent pseudomonad strain R81 is a root colonizing rhizobacteria which promotes the growth of many plants by various mechanisms. Its broth containing siderophore (ironchelating compound) and 2,4- diacetyl phloroglucinol (DAPG) is used for preparing bioinoculant formulations for agronomical applications. Glycerol was found to be the best carbon source for improved biomass production. Splitting of nitrogen source to NH4Cl and urea had a stabilizing effect on pH during batch cultivation. Ltryptophan at 0.5 % in the medium increased the siderophore production to 850 mg/l. During batch cultivation of the strain in a bioreactor, a maximum of 4 g/l of dry cell mass, 1.8 g/l of siderophore and 20 mg/l of DAPG was achieved when glycerol was 15 g/l and C/N ratio was maintained at 12.5. In case of intermittent feeding of fresh medium during fed-batch cultivation, the dry cell mass was increased to 25 g/l with improved production of DAPG to 70 mg/l.

Turfgrass Quality Changes from Season to Season on Perennial Ryegrass (lolium perenne l.) Genotypes Collected from Natural Flora

Perennial ryegrass (Lolium perenne L.) plants are cultivated for lawn constitution and as forage plants. Considerable number of perennial ryegrass genotypes are present in the flora of our country and they present substantial was performed based on a Project supported bu TUBITAK (Project numver : 106O159) and perannial ryegrass genotypes from 8 provinces were collected during 2006. Seeds of perennial ryegrass were collected from 48 different locations. Populations of turfgrass seeds in flowerpots to be 20 and 1 cm deep greenhouse were sown in three replications at 07.07.2007.Then the growth of turfgrass seedlings in the greenhouse in pots showed sufficiently separated from the plants were planted in each population. Plants planted in the garden of the observation scale of 1-9 was evaluated by the quality, 1 = the weakest / worst, 6 = acceptable and 9 = superior or considered as an ideal. Essentially only recognized in assessing the quality of the color of grass, but the color, density, uniformity, texture (texture), illness or environmental stresses are evaluated as a combination reaction. Turfgrass quality 15.11.2007, 19.03.2008, 27.05.2008, 27.11.2008, 07.03.2009 and 02.06.2009 have been 6 times to be in order. Observations made regarding the quality of grass; 3 years according to seasonal environments turf quality genotypes belonging to 14 different populations were found to be 7.5 and above are reserved for future use in breeding works.The number of genotypes belonging to 41 populations in terms of turfgrass quality was determined as 7.9 of 3 year average seasonal. Argıthan between Doğanhisar (Konya) is located 38.09 latitude and 31.40 longitude, altitude 1158 m in the set that population numbered 41.

Deficiencies of Lung Segmentation Techniques using CT Scan Images for CAD

Segmentation is an important step in medical image analysis and classification for radiological evaluation or computer aided diagnosis. This paper presents the problem of inaccurate lung segmentation as observed in algorithms presented by researchers working in the area of medical image analysis. The different lung segmentation techniques have been tested using the dataset of 19 patients consisting of a total of 917 images. We obtained datasets of 11 patients from Ackron University, USA and of 8 patients from AGA Khan Medical University, Pakistan. After testing the algorithms against datasets, the deficiencies of each algorithm have been highlighted.

Application of Fluorescent Pseudomonads Inoculant Formulations on Vigna mungo through Field Trial

Vermiculite was used to develop inorganic carrier-based formulations of fluorescent pseudomonad strains R62 and R81. The effect of bio-inoculation of fluorescent pseudomonad strains R62 and R81 (plant growth promoting and biocontrol agent) on growth responses of Vigna-mungo under field condition was enumerated. The combined bioinoculation of these two organisms in a formuation increased the pods yield by 300% in comparison to the control crop. There was also significant increment in the other plant growth responses such as dry root weight, dry shoot weight, shoot length and number of branches per plant.

A Computational Comparison between Revetec Engine and Conventional Internal Combustion Engines on the Indicated Torque

This paper investigates the effect of replacing crankshaft with cam on the indicated torque during compression and power strokes in internal combustion engines. A Cycloidal cam profile was used in Revetec engine to calculate and compare the torque to a conventional engine, using a computational method. Firstly, the cylinder pressure was calculated using Ferguson equation, and then the torque calculated depending on cylinder pressure values in every crank angle. the results showed that by using Cycloidal cam profile in Revetec engine the torque can increased by 14% compared with conventional engines, which means an increase in engine efficiency.

Characterization for Post-treatment Effect of Bagasse Ash for Silica Extraction

Utilization of bagasse ash for silica sources is one of the most common application for agricultural wastes and valuable biomass byproducts in sugar milling. The high percentage silica content from bagasse ash was used as silica source for sodium silicate solution. Different heating temperature, time and acid treatment were studies for silica extraction. The silica was characterized using various techniques including X-ray fluorescence, X-ray diffraction, Scanning electron microscopy, and Fourier Transform Infrared Spectroscopy method,. The synthesis conditions were optimized to obtain the bagasse ash with the maximum silica content. The silica content of 91.57 percent was achieved from heating of bagasse ash at 600°C for 3 hours under oxygen feeding and HCl treatment. The result can be used as value added for bagasse ash utilization and minimize the environmental impact of disposal problems.

A Martingale Residual Diagnostic for Logistic Regression Model

Martingale model diagnostic for assessing the fit of logistic regression model to recurrent events data are studied. One way of assessing the fit is by plotting the empirical standard deviation of the standardized martingale residual processes. Here we used another diagnostic plot based on martingale residual covariance. We investigated the plot performance under several types of model misspecification. Clearly the method has correctly picked up the wrong model. Also we present a test statistic that supplement the inspection of the two diagnostic. The test statistic power agrees with what we have seen in the plots of the estimated martingale covariance.

Assessing drought Vulnerability of Bulgarian Agriculture through Model Simulations

This study assesses the vulnerability of Bulgarian agriculture to drought using the WINISAREG model and seasonal standard precipitation index SPI(2) for the period 1951-2004. This model was previously validated for maize on soils of different water holding capacity (TAW) in various locations. Simulations are performed for Plovdiv, Stara Zagora and Sofia. Results relative to Plovdiv show that in soils of large TAW (180 mm m-1) net irrigation requirements (NIRs) range 0-40 mm in wet years and 350-380 mm in dry years. In soils of small TAW (116 mm m-1), NIRs reach 440 mm in the very dry year. NIRs in Sofia are about 80 mm smaller. Rainfed maize is associated with great yield variability (29%

Circuit Breaker and Transformer Monitoring

Since large power transformers are the most expensive and strategically important components of any power generator and transmission system, their reliability is crucially important for the energy system operation. Also, Circuit breakers are very important elements in the power transmission line so monitoring the events gives a knowledgebase to determine time to the next maintenance. This paper deals with the introduction of the comparative method of the state estimation of transformers and Circuit breakers using continuous monitoring of voltage, current. This paper gives details a new method based on wavelet to apparatus insulation monitoring. In this paper to insulation monitoring of transformer, a new method based on wavelet transformation and neutral point analysis is proposed. Using the EMTP tools, fault in transformer winding and the detailed transformer winding model were simulated. The current of neutral point of winding was analyzed by wavelet transformation. It is shown that the neutral current of the transformer winding has useful information about fault in insulation of the transformer.

Study of Characteristics of Multi-Layer Piezoelectric Transformers by using 3-D Finite Element Method

Piezoelectric transformers are electronic devices made from piezoelectric materials. The piezoelectric transformers as the name implied are used for changing voltage signals from one level to another. Electrical energy carried with signals is transferred by means of mechanical vibration. Characterizing in both electrical and mechanical properties leads to extensively use and efficiency enhancement of piezoelectric transformers in various applications. In this paper, study and analysis of electrical and mechanical properties of multi-layer piezoelectric transformers in forms of potential and displacement distribution throughout the volume, respectively. This paper proposes a set of quasi-static mathematical model of electromechanical coupling for piezoelectric transformer by using a set of partial differential equations. Computer-based simulation utilizing the three-dimensional finite element method (3-D FEM) is exploited as a tool for visualizing potentials and displacements distribution within the multi-layer piezoelectric transformer. This simulation was conducted by varying a number of layers. In this paper 3, 5 and 7 of the circular ring type were used. The computer simulation based on the use of the FEM has been developed in MATLAB programming environment.

Analysis of Electromagnetic Field Effects Using FEM for Transmission Lines Transposition

This paper presents the mathematical model of electric field and magnetic field in transmission system, which performs in second-order partial differential equation. This research has conducted analyzing the electromagnetic field radiating to atmosphere around the transmission line, when there is the transmission line transposition in case of long distance distribution. The six types of 500 kV transposed HV transmission line with double circuit will be considered. The computer simulation is applied finite element method that is developed by MATLAB program. The problem is considered to two dimensions, which is time harmonic system with the graphical performance of electric field and magnetic field. The impact from simulation of six types long distance distributing transposition will not effect changing of electric field and magnetic field which surround the transmission line.

Segmentation of Lungs from CT Scan Images for Early Diagnosis of Lung Cancer

Segmentation is an important step in medical image analysis and classification for radiological evaluation or computer aided diagnosis. The CAD (Computer Aided Diagnosis ) of lung CT generally first segment the area of interest (lung) and then analyze the separately obtained area for nodule detection in order to diagnosis the disease. For normal lung, segmentation can be performed by making use of excellent contrast between air and surrounding tissues. However this approach fails when lung is affected by high density pathology. Dense pathologies are present in approximately a fifth of clinical scans, and for computer analysis such as detection and quantification of abnormal areas it is vital that the entire and perfectly lung part of the image is provided and no part, as present in the original image be eradicated. In this paper we have proposed a lung segmentation technique which accurately segment the lung parenchyma from lung CT Scan images. The algorithm was tested against the 25 datasets of different patients received from Ackron Univeristy, USA and AGA Khan Medical University, Karachi, Pakistan.

Sentence Modality Recognition in French based on Prosody

This paper deals with automatic sentence modality recognition in French. In this work, only prosodic features are considered. The sentences are recognized according to the three following modalities: declarative, interrogative and exclamatory sentences. This information will be used to animate a talking head for deaf and hearing-impaired children. We first statistically study a real radio corpus in order to assess the feasibility of the automatic modeling of sentence types. Then, we test two sets of prosodic features as well as two different classifiers and their combination. We further focus our attention on questions recognition, as this modality is certainly the most important one for the target application.

Migration from Commercial to in-House Developed Learning Management Systems

The Learning Management Systems present learning environment which offers a collection of e-learning tools in a package that allows a common interface and information sharing among the tools. South East European University initial experience in LMS was with the usage of the commercial LMS-ANGEL. After a three year experience on ANGEL usage because of expenses that were very high it was decided to develop our own software. As part of the research project team for the in-house design and development of the new LMS, we primarily had to select the features that would cover our needs and also comply with the actual trends in the area of software development, and then design and develop the system. In this paper we present the process of LMS in-house development for South East European University, its architecture, conception and strengths with a special accent on the process of migration and integration with other enterprise applications.