Production of Biodiesel from Different Edible Oils

Different vegetable oil based biodiesel (FAMES) were prepared by alkaline transesterification using refined oils as well as waste frying oil (WFO). Methanol and sodium hydroxide are used as catalyst under similar reaction conditions. To ensure the quality of biodiesel produced, a series of different ASTM Standard tests were carried out. In this context, various testwere done including viscosity, carbon residue, specific gravity, corrosion test, flash point, cloud point and pour point. Results revealed that characteristics of biodiesel depend on the feedstock and it is far better than petroleum diesel.

Some Physiological Effects of Momordica charantia and Trigonella foenum-graecum Extracts in Diabetic Rats as Compared with Cidophage®

This study was conducted to evaluate the anti-diabetic properties of ethanolic extract of two plants commonly used in folk medicine, Mormodica charantia (bitter melon) and Trigonella foenum-graecum (fenugreek). The study was performed on STZinduced diabetic rats (DM type-I). Plant extracts of these two plants were given to STZ diabetic rats at the concentration of 500 mg/kg body weight ,50 mg/kg body weight respectively. Cidophage® (metformin HCl) were administered to another group to support the results at a dose of 500 mg/kg body weight, the ethanolic extracts and Cidophage administered orally once a day for four weeks using a stomach tube and; serum samples were obtained for biochemical analysis. The extracts caused significant decreases in glucose levels compared with diabetic control rats. Insulin secretions were increased after 4 weeks of treatment with Cidophage® compared with the control non-diabetic rats. Levels of AST and ALT liver enzymes were normalized by all treatments. Decreases in liver cholesterol, triglycerides, and LDL in diabetic rats were observed with all treatments. HDL levels were increased by the treatments in the following order: bitter melon, Cidophage®, and fenugreek. Creatinine levels were reduced by all treatments. Serum nitric oxide and malonaldehyde levels were reduced by all extracts. GSH levels were increased by all extracts. Extravasation as measured by the Evans Blue test increased significantly in STZ-induced diabetic animals. This effect was reversed by ethanolic extracts of bitter melon or fenugreek.

Thermal and Morphological Evaluation of Chemically Pretreated Sugarcane Bagasse

Enzymatic hydrolysis is one of the major steps involved in the conversion from sugarcane bagasse to yield ethanol. This process offers potential for yields and selectivity higher, lower energy costs and milder operating conditions than chemical processes. However, the presence of some factors such as lignin content, crystallinity degree of the cellulose, and particle sizes, limits the digestibility of the cellulose present in the lignocellulosic biomasses. Pretreatment aims to improve the access of the enzyme to the substrate. In this study sugarcane bagasse was submitted chemical pretreatment that consisted of two consecutive steps, the first with dilute sulfuric acid (1 % (v/v) H2SO4), and the second with alkaline solutions with different concentrations of NaOH (1, 2, 3 and 4 % (w/v)). Thermal Analysis (TG/ DTG and DTA) was used to evaluate hemicellulose, cellulose and lignin contents in the samples. Scanning Electron Microscopy (SEM) was used to evaluate the morphological structures of the in natura and chemically treated samples. Results showed that pretreatments were effective in chemical degradation of lignocellulosic materials of the samples, and also was possible to observe the morphological changes occurring in the biomasses after pretreatments.

Gastroprotective Activity of Swietenia Mahagoni Seed Extract on Ethanol-Induced Gastric Mucosal Injury in Rats

Swietenia mahagoni have been used in traditional medicine for treatment of different diseases. Present study was performed to evaluate anti-ulcerogenic activity of ethanol seed extract against ethanol induced gastric mucosal injury in rats. Six groups of rats were orally pre-treated respectively with carboxymethyl cellulose, omeprazole 20 mg/kg, 50, 100, 200 and 400 mg/kg plant extract one hour before oral administration of absolute ethanol to generate gastric mucosal injury. After additional hour, rats were sacrificed and ulcer areas of gastric walls were determined. Grossly, carboxymethyl cellulose group exhibited severe mucosal injury, whereas pre-treatment with plant extract exhibited significant protection of gastric mucosa. Histology, carboxymethyl cellulose group exhibited severe damage of gastric mucosa; edema and leucocytes infiltration of sub mucosa compared to plant extract which showed gastric protection. Acute toxicity study did not manifest any toxicological signs in rats. Conclusions, results suggest that S. mahagoni promotes ulcer protection as ascertained grossly and histologically.

Optimization of Microwave-Assisted Extraction of Cherry Laurel (Prunus laurocerasus L.) Fruit Using Response Surface Methodology

Optimization of a microwave-assisted extraction of cherry laurel (Prunus laurocerasus) fruit using methanol was studied. The influence of process parameters (microwave power, plant material-to-solvent ratio and the extraction time) on the extraction efficiency were optimized by using response surface methodology. The predicted maximum yield of extractive substances (41.85 g/100 g fresh plant material) was obtained at microwave power of 600 W and plant material to solvent ratio of 0.2 g/cm3 after 26 minutes of extraction, while a mean value of 40.80±0.41 g/100 g fresh plant material was obtained from laboratory experiments. This proves applicability of the model in predicting optimal extraction conditions with minimal laborious and time consuming. The results indicated that all process parameters were effective on the extraction efficiency, while the most important factor was extraction time. In order to rationalize production the optimal economical condition which gave a large total extract yield with minimal energy and solvent consumption was found.

Study the Biological Activities of Tribulus Terrestris Extracts

In this study the extracts of the Iraqi herb Tribulus terrestris (Al-Hassage or Al-Kutub) was done by using of polar and non polar solvents, then the biological activity of these extractants was studied in three fields, First, the antibacterial activity (in vitro) on gram positive bacteria (Staphylococcus aureus), and gram negative bacteria (E. coli, Proteus vulgaris, Pseudomonas aerugiuosa, and Klebsiella), all extracts showed considerable activity against all bacteria. Second, the effect of extracts on free serum testosterone level in male mice (in vivo), the alcoholic, and acetonitrilic extracts showed significant (P < 0.05) increase in free serum testosterone level, and we found that the extracts contained compounds with less genotoxic effects in mice germ cells. 3rd, was to study the effect of methanolic extract of T. terrestris in diabetes management.

Global Kinetics of Direct Dimethyl Ether Synthesis Process from Syngas in Slurry Reactor over a Novel Cu-Zn-Al-Zr Slurry Catalyst

The direct synthesis process of dimethyl ether (DME) from syngas in slurry reactors is considered to be promising because of its advantages in caloric transfer. In this paper, the influences of operating conditions (temperature, pressure and weight hourly space velocity) on the conversion of CO, selectivity of DME and methanol were studied in a stirred autoclave over Cu-Zn-Al-Zr slurry catalyst, which is far more suitable to liquid phase dimethyl ether synthesis process than bifunctional catalyst commercially. A Langmuir- Hinshelwood mechanism type global kinetics model for liquid phase DME direct synthesis based on methanol synthesis models and a methanol dehydration model has been investigated by fitting our experimental data. The model parameters were estimated with MATLAB program based on general Genetic Algorithms and Levenberg-Marquardt method, which is suitably fitting experimental data and its reliability was verified by statistical test and residual error analysis.

The Influence of Biofuels on the Permeability of Sand-Bentonite Liners

Liners are made to protect the groundwater table from the infiltration of leachate which normally carries different kinds of toxic materials from landfills. Although these liners are engineered to last for long period of time; unfortunately these liners fail; therefore, toxic materials pass to groundwater. This paper focuses on the changes of the hydraulic conductivity of a sand-bentonite liner due to the infiltration of biofuel and ethanol fuel. Series of laboratory tests were conducted in 20-cm-high PVC columns. Several compositions of sand-bentonite liners were tested: 95% sand: 5% bentonite; 90% sand: 10% bentonite; and 100% sand (passed mesh #40). The columns were subjected to extreme pressures of 40 kPa, and 100 kPa to evaluate the transport of alternative fuels (biofuel and ethanol fuel). For comparative studies, similar tests were carried out using water. Results showed that hydraulic conductivity increased due to the infiltration of alternative fuels through the liners. Accordingly, the increase in the hydraulic conductivity showed significant dependency on the type of liner mixture and the characteristics of the liquid. The hydraulic conductivity of a liner (subjected to biofuel infiltration) consisting of 5% bentonite: 95% sand under pressure of 40 kPa and 100 kPa had increased by one fold. In addition, the hydraulic conductivity of a liner consisting of 10% bentonite: 90% sand under pressure of 40 kPa and 100 kPa and infiltrated by biofuel had increased by three folds. On the other hand, the results obtained by water infiltration under 40 kPa showed lower hydraulic conductivities of 1.50×10-5 and 1.37×10-9 cm/s for 5% bentonite: 95% sand, and 10% bentonite: 90% sand, respectively. Similarly, under 100 kPa, the hydraulic conductivities were 2.30×10-5 and 1.90×10-9 cm/s for 5% bentonite: 95% sand, and 10% bentonite: 90% sand, respectively.

Integrated Drunken Driving Prevention System

As is needless to say; a majority of accidents, which occur, are due to drunk driving. As such, there is no effective mechanism to prevent this. Here we have designed an integrated system for the same purpose. Alcohol content in the driver-s body is detected by means of an infrared breath analyzer placed at the steering wheel. An infrared cell directs infrared energy through the sample and any unabsorbed energy at the other side is detected. The higher the concentration of ethanol, the more infrared absorption occurs (in much the same way that a sunglass lens absorbs visible light, alcohol absorbs infrared light). Thus the alcohol level of the driver is continuously monitored and calibrated on a scale. When it exceeds a particular limit the fuel supply is cutoff. If the device is removed also, the fuel supply will be automatically cut off or an alarm is sounded depending upon the requirement. This does not happen abruptly and special indicators are fixed at the back to avoid inconvenience to other drivers using the highway signals. Frame work for integration of sensors and control module in a scalable multi-agent system is provided .A SMS which contains the current GPS location of the vehicle is sent via a GSM module to the police control room to alert the police. The system is foolproof and the driver cannot tamper with it easily. Thus it provides an effective and cost effective solution for the problem of drunk driving in vehicles.

Environmental Friendly Polyurethane Coatings Based On Hyperbranched Resin

Water borne polyurethane (PU) based on newly prepared hyperbranched poly (amine-ester) (HBPAE) was applied and evaluated as organic coating material. HBPAE was prepared through one-pot synthesis between trimethylol propane as a core and AB2 branched monomer which was obtained via Michal addition of methyl methacrylate (MMA) and diethanol amine (DEA). PU was prepared from HBPAE using different ratios of toluene diisocyanate (TDI) to form cured coating film. The prepared HBPAE was characterized using; GPC, FT-IR and 1H-NMR. The mechanical properties (impact, hardness, adhesion, and flexibility), thermal properties (DSC and TGA) and chemical resistance of the applied film were estimated. The results indicated 50% of TDI is the selected ratio. This formulation represents a promising candidate to be used as coating material.

Thermal Distribution in Axial-Flow Fixed Bed with Flowing Gas

This paper reported an experimental research of steady-state heat transfer behaviour of a gas flowing through a fixed bed under the different operating conditions. Studies had been carried out in a fixed-bed packed methanol synthesis catalyst percolated by air at appropriate flow rate. Both radial and axial direction temperature distribution had been investigated under the different operating conditions. The effects of operating conditions including the reactor inlet air temperature, the heating pipe temperature and the air flow rate on temperature distribution was investigated and the experimental results showed that a higher inlet air temperature was conducive to uniform temperature distribution in the fixed bed. A large temperature drop existed at the radial direction, and the temperature drop increased with the heating pipe temperature increasing under the experimental conditions; the temperature profile of the vicinity of the heating pipe was strongly affected by the heating pipe temperature. A higher air flow rate can improve the heat transfer in the fixed bed. Based on the thermal distribution, heat transfer models of the fixed bed could be established, and the characteristics of the temperature distribution in the fixed bed could be finely described, that had an important practical significance.

Biodegradation of Lignocellulosic Residues of Water Hyacinth (Eichhornia crassipes) and Response Surface Methodological Approach to Optimize Bioethanol Production Using Fermenting Yeast Pachysolen tannophilus NRRL Y-2460

The objective of this research was to investigate biodegradation of water hyacinth (Eichhornia crassipes) to produce bioethanol using dilute-acid pretreatment (1% sulfuric acid) results in high hemicellulose decomposition and using yeast (Pachysolen tannophilus) as bioethanol producing strain. A maximum ethanol yield of 1.14g/L with coefficient, 0.24g g-1; productivity, 0.015g l-1h-1 was comparable to predicted value 32.05g/L obtained by Central Composite Design (CCD). Maximum ethanol yield coefficient was comparable to those obtained through enzymatic saccharification and fermentation of acid hydrolysate using fully equipped fermentor. Although maximum ethanol concentration was low in lab scale, the improvement of lignocellulosic ethanol yield is necessary for large scale production.

Antibacterial and Antifungal Activity Assesment of Nigella Sativa Essential Oils

Antifungal activities of ether and methanolic extracts of volatiles oils of Nigella Sativa seeds were tested against pathogenic bacterias and fungies strains.The volatile oil were found to have significant antifungal and antibacterial activities compare to tetracycline, cefuroxime and ciprofloxacin positive controls.The ether and methanolic esxtracts were compared to each other for antifungal and antibacterial activities and ether extracts showed stonger activity than methanolic one.

Enzymatic Esterification of Carboxylic Acids and Higher Alcohols in Organic Medium

The studying of enzymatic esterification of carboxylic acids and higher alcohols was performed by esterase Saccharomyces cerevisiae in water-organic medium. Investigation of the enzyme specificity to acetic substrates showed the best result with acetic acid in esterification reactions with ethanol whereas within other carboxylic acids the esterification decreased with acids: hexanoic > pentanoic > butyric > decanoic. In relation to higher alcohols C3-C5, esterification increased with alcohols propanol < butanol < amylol. Also it was determined that esterase was more specific to alcohols with branched chain such as isobutyl alcohol and isoamyl alcohol. Data obtained may have important practical implications, for example, for application of yeast esterase in producing various volatile esters as well as in enzymatic transformation of volatile acids and toxic fusel alcohols into volatile esters by providing the production of the high quality alcoholic beverages with redused content of higher alcohols as well as with improved degustational and hygienic properties.

Ethanol Production from Sugarcane Bagasse by Means of Enzymes Produced by Solid State Fermentation Method

Nowadays there is a growing interest in biofuel production in most countries because of the increasing concerns about hydrocarbon fuel shortage and global climate changes, also for enhancing agricultural economy and producing local needs for transportation fuel. Ethanol can be produced from biomass by the hydrolysis and sugar fermentation processes. In this study ethanol was produced without using expensive commercial enzymes from sugarcane bagasse. Alkali pretreatment was used to prepare biomass before enzymatic hydrolysis. The comparison between NaOH, KOH and Ca(OH)2 shows NaOH is more effective on bagasse. The required enzymes for biomass hydrolysis were produced from sugarcane solid state fermentation via two fungi: Trichoderma longibrachiatum and Aspergillus niger. The results show that the produced enzyme solution via A. niger has functioned better than T. longibrachiatum. Ethanol was produced by simultaneous saccharification and fermentation (SSF) with crude enzyme solution from T. longibrachiatum and Saccharomyces cerevisiae yeast. To evaluate this procedure, SSF of pretreated bagasse was also done using Celluclast 1.5L by Novozymes. The yield of ethanol production by commercial enzyme and produced enzyme solution via T. longibrachiatum was 81% and 50% respectively.

Waste Oils pre-Esterification for Biodiesel Synthesis: Effect of Feed Moisture Contents

A process flowsheet was developed in ChemCad 6.4 to study the effect of feed moisture contents on the pre-esterification of waste oils. Waste oils were modelled as a mixture of triolein (90%), oleic acid (5%) and water (5%). The process mainly consisted of feed drying, pre-esterification reaction and methanol recovery. The results showed that the process energy requirements would be minimized when higher degrees of feed drying and higher preesterification reaction temperatures are used.

Study Interaction between Tin Dioxide Nanowhiskers and Ethanol Molecules in Gas Phase: Monte Carlo(MC) and Langevin Dynamics (LD) Simulation

Three dimensional nanostructure materials have attracted the attention of many researches because the possibility to apply them for near future devices in sensors, catalysis and energy related. Tin dioxide is the most used material for gas sensing because its three-dimensional nanostructures and properties are related to the large surface exposed to gas adsorption. We propose the use of branch SnO2 nanowhiskers in interaction with ethanol. All Sn atoms are symmetric. The total energy, potential energy and Kinetic energy calculated for interaction between SnO2 and ethanol in different distances and temperatures. The calculations achieved by methods of Langevin Dynamic and Mont Carlo simulation. The total energy increased with addition ethanol molecules and temperature so interactions between them are endothermic.

Study of Sugarcane Bagasse Pretreatment with Sulfuric Acid as a Step of Cellulose Obtaining

To produce sugar and ethanol, sugarcane processing generates several agricultural residues, being straw and bagasse is considered as the main among them. And what to do with this residues has been subject of many studies and experiences in an industry that, in recent years, highlighted by the ability to transform waste into valuable products such as electric power. Cellulose is the main component of these materials. It is the most common organic polymer and represents about 1.5 x 1012 tons of total production of biomass per year and is considered an almost inexhaustible source of raw material. Pretreatment with mineral acids is one of the most widely used as stage of cellulose extraction from lignocellulosic materials for solubilizing most of the hemicellulose content. This study had as goal to find the best reaction time of sugarcane bagasse pretreatment with sulfuric acid in order to minimize the losses of cellulose concomitantly with the highest possible removal of hemicellulose and lignin. It was found that the best time for this reaction was 40 minutes, in which it was reached a loss of hemicelluloses around 70% and lignin and cellulose, around 15%. Over this time, it was verified that the cellulose loss increased and there was no loss of lignin and hemicellulose.

Extraction of Phenol, o-Cresol, and p-Cresol from Coal Tar: Effect of Temperature and Mixing

Coal tar is a liquid by-product of the process of coal gasification and carbonation. This liquid oil mixture contains various kinds of useful compounds such as phenol, o-cresol, and p-cresol. These compounds are widely used as raw material for insecticides, dyes, medicines, perfumes, coloring matters, and many others. This research needed to be done that given the optimum conditions for the separation of phenol, o-cresol, and p-cresol from the coal tar by solvent extraction process. The aim of the present work was to study the effect of two kinds of aqueous were used as solvents: methanol and acetone solutions, the effect of temperature (298, 306, and 313K) and mixing (30, 35, and 40rpm) for the separation of phenol, o-cresol, and p-cresol from coal tar by solvent extraction. Results indicated that phenol, o-cresol, and p-cresol in coal tar were selectivity extracted into the solvent phase and these components could be separated by solvent extraction. The aqueous solution of methanol, mass ratio of solvent to feed, Eo/Ro=1, extraction temperature 306K and mixing 35 rpm were the most efficient for extraction of phenol, o-cresol, and p-cresol from coal tar.

Soybean and Fermented Soybean Extract Antioxidant Activities

Today, people are more interested in the foods beneficial on their health. However, there are still lacks of accurate knowledge in the field of biological properties, functional properties, including the application of legume in foods. This study focused on antioxidant activity of soybean (SB) and fermented soybean (FSB) crude extracts evaluating to have more information in fortification SB and FSB crude extracts in food products and/or dietary supplement. SB and FSB crude extracts were prepared by infusion with water and ethanol. The antioxidant activity of crude extracts was studied with DPPH and ABTS assay including commercial standard. From both DPPH and ABTS assay, the antioxidant activity of SB and FSB water crude extract showed higher antioxidant activity than ethanol crude extract, and FSB crude extract showed higher antioxidant activity than SB crude extract. In DPPH assay, BHT and vitamin C showed IC50 values at 0.241, 0.039 mg/ml, in ABTS assay. In addition, Trolox showed IC50 at 0.058 mg/ml respectively. FSB water crude extract showed high antioxidant activity. Finally, the functional properties study of both water and ethanol crude extracts should be done for beneficial in application of these extracts in food products and dietary supplement in the near future.