Libretto Thematology in Rossini's Operas and Its Formation by the Composer

The present study examines the way Gioachino Rossini’s librettos are selected and formed demonstrating the evolutionary trajectory of the composer during his operatic career. Rossini, a dominant figure in the early 19th century Italian opera, is demanding in his choice of librettos and has a preference for subjects inspired by European literature, of his time or earlier. He begins his operatic career with farsae and operas buffae, but he mainly continues with operas seriae, to end it with a grand opera that conforms to the spirit of romanticism as manifested in Paris of his time. His farsae, operas buffae and comic operas in general are representative of the trends of the time: in some the irrational and the exaggeration prevail, in others the upheavals, others are semi-serious and emotional with a happy ending and others are comedies with more realistic characters, but usually the styles are mixed and complement each other. The stories that refer to his modern era unfold mocking human characters, beliefs attitudes and their expressions in every day habits, satirizing current affairs, presenting innovative elements in dramatic intervention and dealing with a variety of social and national issues. Count Ory, his final comic work, consists of a complex witty urban comic opera entwined with romantic sensitivity. The themes he chooses for his operas seriae are characterized by tragic passion, take place in the era of the Trojan War, the Roman Empire, the Middle Ages, and the Age of the Crusades and are set in Italy, England, Poland, Greece, Switzerland, Israel and Egypt. In his early works he sketches the characters remotely, objectively and with static, reflexive emotional expression and a happy ending. Then he continues with operas for the San Carlo Theater, which are characterized by experimentation and innovation to end up his Italian operatic career with the ostensibly backward but in fact tragic Semiramis followed in Paris by William Tell, his ultimate dramatic achievement. There are indirect references to burning issues of his era but the censorship of the time does not allow direct reference to topics that would upset the status quo. In addition, Rossini lives in a temporal period of peace after the Napoleonic Wars and by temperament he resists openly engaging in political strife. Furthermore, the need for survival necessitates the search for the more profitable contracts. In conclusion, Rossini, as a liberal personality, shapes his librettos without interruptions or setbacks, with ideas that come out after a lot of thought and a strong sense of purpose. He moves from the moral and aesthetic clarity of the classic tradition of his early works to a more elaborate and morally ambiguous romantic style in a moderate and hesitant way.

The Public Law Studies: Relationship between Accountability, Environmental Education and Smart Cities

Nowadays, the study of public policies regarding management efficiency is essential. Public policies are about what governments do or do not do, being an area that has grown worldwide, contributing through the knowledge of technologies and methodologies that monitor and evaluate the performance of public administrators. The information published on official government websites needs to provide for transparency and responsiveness of managers. Thus, transparency is a primordial factor for the execution of accountability, providing, in this way, services to the citizen with the expansion of transparent, efficient, democratic information and that value administrative eco-efficiency. The ecologically balanced management of a Smart City must optimize environmental education, building a fairer society, which brings about equality in the use of quality environmental resources. Smart Cities add value in the construction of public management, enabling interaction between people, enhancing environmental education and the practical applicability of administrative eco-efficiency, fostering economic development and improving the quality of life.

Finite Element Analysis of Different Architectures for Bone Scaffold

Bone Scaffolds are fundamental architecture or a support structure that allows the regeneration of lost or damaged tissues and they are developed as a crucial tool in biomedical engineering. The structure of bone scaffolds plays an important role in treating bone defects. The shape of the bone scaffold performs a vital role, specifically pore size and shape, which help understand the behavior and strength of the scaffold. In this article, first, fundamental aspects of bone scaffold design are established. Second, the behavior of each architecture of the bone scaffold with biomaterials is discussed. Finally, for each structure, the stress analysis was carried out. This study aimed to design a porous and mechanically strong bone regeneration scaffold that can be successfully manufactured. Four porous architectures of the bone scaffold were designed using Rhinoceros solid modelling software. The structure model consisted of repeatable unit cells arranged in layers to fill the chosen scaffold volume. The mechanical behavior of used biocompatible material is studied with the help of ANSYS 19.2 software. It is also playing significant role to predict the strength of defined structures or 3 dimensional models.

Literature Review on Metallurgical Properties of Ti/Al Weld Joint Using Laser Beam Welding

Several situations arise in industrial practice which calls for joining of dissimilar metals. With increasing demand in the application requirements, dissimilar metal joining becomes inevitable in modern engineering industries. The metals employed are the structure for effective and utilization of the special properties of each metal. The purpose of this paper is to present the research and development status of titanium (Ti) and aluminium (Al) dissimilar alloys weldment by the researchers worldwide. The detailed analysis of problems faced during welding of dissimilar metal joint for Ti/Al metal combinations are discussed. Microstructural variations in heat affected zone (HAZ), fusion zone (FZ), Intermetallic compound (IMC) layer and surface fracture of weldments are analysed. Additionally, mechanical property variations and microstructural feature have been studied by the researchers. The paper provides a detailed literature review of Ti/Al dissimilar metal joint microchemistry and property variation across the weldment.

Analytic on Various Grounding Configurations in Uniform Layer Soil

The performance of an embedded grounding system is very important for the safe operation of electrical appliances and human beings. In principle, a safe grounding system has two objectives, which are to dissipate fault current without exceeding any operating and equipment limits and to ensure there is no risk of electric shock to humans in the vicinity of earthed facilities. The case studies in this paper present the calculating grounding resistance for multiple configurations of vertical and horizontally by using a simple and accurate formula. From the analytic calculated results, observed good/empirical relationship between the grounding resistance and length of the embedded grounding configurations. Moreover, the configurations of vertical and horizontal observed effectiveness of grounding resistance and good agreement on the reduction of grounding resistance values especially for vertical configuration.

Military Use of Artificial Intelligence under International Humanitarian Law: Insights from Canada

As artificial intelligence (AI) technologies can be used by both civilians and soldiers; it is vital to consider the consequences emanating from AI military as well as civilian use. Indeed, many of the same technologies can have a dual-use. This paper will explore the military uses of AI and assess their compliance with international legal norms. AI developments not only have changed the capacity of the military to conduct complex operations but have also increased legal concerns. The existence of a potential legal vacuum in legal principles on the military use of AI indicates the necessity of more study on compliance with International Humanitarian Law (IHL), the branch of international law which governs the conduct of hostilities. While capabilities of new means of military AI continue to advance at incredible rates, this body of law is seeking to limit the methods of warfare protecting civilian persons who are not participating in an armed conflict. Implementing AI in the military realm would result in potential issues including ethical and legal challenges. For instance, when intelligence can perform any warfare task without any human involvement, a range of humanitarian debates will be raised as to whether this technology might distinguish between military and civilian targets or not. This is mainly because AI in fully military systems would not seem to carry legal and ethical judgment which can interfere with IHL principles. The paper will take, as a case study, Canada’s compliance with IHL in the area of AI and the related legal issues that are likely to arise as this country continues to develop military uses of AI.

Using Statistical Significance and Prediction to Test Long/Short Term Public Services and Patients Cohorts: A Case Study in Scotland

Health and Social care (HSc) services planning and scheduling are facing unprecedented challenges, due to the pandemic pressure and also suffer from unplanned spending that is negatively impacted by the global financial crisis. Data-driven approaches can help to improve policies, plan and design services provision schedules using algorithms that assist healthcare managers to face unexpected demands using fewer resources. The paper discusses services packing using statistical significance tests and machine learning (ML) to evaluate demands similarity and coupling. This is achieved by predicting the range of the demand (class) using ML methods such as Classification and Regression Trees (CART), Random Forests (RF), and Logistic Regression (LGR). The significance tests Chi-Squared and Student’s test are used on data over a 39 years span for which data exist for services delivered in Scotland. The demands are associated using probabilities and are parts of statistical hypotheses. These hypotheses, as their NULL part, assume that the target demand is statistically dependent on other services’ demands. This linking is checked using the data. In addition, ML methods are used to linearly predict the above target demands from the statistically found associations and extend the linear dependence of the target’s demand to independent demands forming, thus, groups of services. Statistical tests confirmed ML coupling and made the prediction statistically meaningful and proved that a target service can be matched reliably to other services while ML showed that such marked relationships can also be linear ones. Zero padding was used for missing years records and illustrated better such relationships both for limited years and for the entire span offering long-term data visualizations while limited years periods explained how well patients numbers can be related in short periods of time or that they can change over time as opposed to behaviours across more years. The prediction performance of the associations were measured using metrics such as Receiver Operating Characteristic (ROC), Area Under Curve (AUC) and Accuracy (ACC) as well as the statistical tests Chi-Squared and Student. Co-plots and comparison tables for the RF, CART, and LGR methods as well as the p-value from tests and Information Exchange (IE/MIE) measures are provided showing the relative performance of ML methods and of the statistical tests as well as the behaviour using different learning ratios. The impact of k-neighbours classification (k-NN), Cross-Correlation (CC) and C-Means (CM) first groupings was also studied over limited years and for the entire span. It was found that CART was generally behind RF and LGR but in some interesting cases, LGR reached an AUC = 0 falling below CART, while the ACC was as high as 0.912 showing that ML methods can be confused by zero-padding or by data’s irregularities or by the outliers. On average, 3 linear predictors were sufficient, LGR was found competing well RF and CART followed with the same performance at higher learning ratios. Services were packed only when a significance level (p-value) of their association coefficient was more than 0.05. Social factors relationships were observed between home care services and treatment of old people, low birth weights, alcoholism, drug abuse, and emergency admissions. The work found  that different HSc services can be well packed as plans of limited duration, across various services sectors, learning configurations, as confirmed by using statistical hypotheses.

Creating a Profound Sense of Comfort to Stimulate Workers’ Innovation and Productivity: Exploring Research and Case Study Applications

Purpose: The aim of this research is to explore and discuss innovation-workspaces, and how the design of the workspace has the potential to boost the work process and encourage employees’ satisfaction, leading to inventive and creative results. Background: The relationship between the workers and the work environment has a strong potential to enhance work outcomes when optimized for work goals. Innovation-work environment can benefit employees’ satisfaction, health, and performance. To understand this complex relationship, this research explores innovation-work environments. Methods: A review of 26 peer-reviewed articles, seven books, and 23 companies’ websites was conducted; in addition, five case studies were analyzed to deduce appropriate examples for the study. Results: The research found all successful five innovation environments focused on two aspects: first, workers’ satisfaction and comfort, which includes a focus on physical, functional, and psychological comfort; second aspect, all five centers were diverse work environments that addressed workers’ needs, design for individuals and teamwork, design for workers’ freedom, and design for increasing interaction. Conclusion: understanding individuals' needs and creating work environments that enhance interaction between workers and with the space are key aspects of successful innovation-work environments.

Simulation on Influence of Environmental Conditions on Part Distortion in Fused Deposition Modelling

Fused Deposition Modelling (FDM) is one of the additive manufacturing techniques that has become highly attractive in the industrial and academic sectors. However, parts fabricated through FDM are highly susceptible to geometrical defects such as warpage, shrinkage, and delamination that can severely affect their function. Among the thermoplastic polymer feedstock for FDM, semi-crystalline polymers are highly prone to part distortion due to polymer crystallization. In this study, the influence of FDM processing conditions such as chamber temperature and print bed temperature on the induced thermal residual stress and resulting warpage are investigated using 3D transient thermal model for a semi-crystalline polymer. The thermo-mechanical properties and the viscoelasticity of the polymer, as well as the crystallization physics which considers the crystallinity of the polymer, are coupled with the evolving temperature gradient of the print model. From the results it was observed that increasing the chamber temperature from 25 °C to 75 °C leads to a decrease of 3.3% residual stress and increase of 0.4% warpage, while decreasing bed temperature from 100 °C to 60 °C resulted in 27% increase in residual stress and a significant rise of 137% in warpage. The simulated warpage data are validated by comparing it with the measured warpage values of the samples using 3D scanning.

Biomarkers in a Post-Stroke Population: Allied to Health Care in Brazil

Stroke affects not only the individual, but has significant impacts on the social and family context. Therefore, it is necessary to know the peculiarities of each region, in order to contribute to regional public health policies effectively. Thus, the present study discusses biomarkers in a post-stroke population, admitted to a stroke unit (U-stroke) of reference in the southern region of Brazil. Biomarkers were analyzed, such as age, length of stay, mortality rate, survival time, risk factors and family history of stroke in patients after ischemic stroke. In this studied population, comparing men and women, it was identified that men were more affected than women, and the average age of women affected was higher, as they also had the highest mortality rate and the shortest hospital stay. The risk factors identified here were according to the global scenario; with systemic arterial hypertension (SAH) being the most frequent and those associated with sedentary lifestyle in women the most frequent (dyslipidemia, heart disease and obesity). In view of this, the importance of studies that characterize populations regionally is evident, strengthening the strategic planning of policies in favor of health care.

Synthesis of a Control System of a Deterministic Chaotic Process in the Class of Two-Parameter Structurally Stable Mappings

In this paper, the problem of unstable and deterministic chaotic processes in control systems is considered. The synthesis of a control system in the class of two-parameter structurally stable mappings is demonstrated. This is realized via the gradient-velocity method of Lyapunov vector functions. It is shown that the gradient-velocity method of Lyapunov vector functions allows generating an aperiodic robust stable system with the desired characteristics. A simple solution to the problem of synthesis of control systems for unstable and deterministic chaotic processes is obtained. Moreover, it is applicable for complex systems.

Indian Women’s Inner -World and Female Protest in Githa Hariharan’s Novel ‘The Thousand Faces of Night’

Gender statuses are inherently unequal; it is difficult to establish equality between men and women in the light of traditional inequalities across the world. This research focuses on the similarities and differences among women from different generations, different kinds of educational backgrounds and highlights the conflict experiences of the characters in Githa Hariharan’s novel “The Thousand Faces of Night”. The purpose is to show how women are suffering and are being humiliated in a male-dominated society. The paper depicts how women in India grapple from male domination aggressiveness as well as the cultural, social and religious controlling in the society they live in. The paper also seeks to explore the importance of knowledge as a powerful component which produces positive effects at the level of desire. The paper is based on the theories of Simone Beauvoir, Pierre Bourdieu, Edward Said, Rene Descartes and Amy Bhatt. Finally, the research emphasizes survival against hegemonic regimes and hope of Indian women for better life.

Failure Analysis of a Fractured Control Pressure Tube from an Aircraft Engine

This paper studies a failure case of a fuel pressure supply tube from an aircraft engine. Multiple fracture cases of the fuel pressure control tube from aircraft engines have been reported. The studied set was composed by the mentioned tube, a welded connecting pipe, where the fracture has been produced, and a union nut. The fracture has been produced in one of the most critical zones of the tube, in a region next to the supporting body of the union nut to the connector. The tube material was X6CrNiTi18-10, an austenitic stainless steel. Chemical composition was determined using an X-Ray fluorescence spectrometer (XRF) and combustion equipment. Furthermore, the material was characterized mechanically, by a hardness test, and microstructurally using a stereo microscope and an optical microscope. The results confirmed that the material was within specifications. To determine the macrofractographic features, a visual examination and an observation using a stereo microscope of the tube fracture surface were carried out. The results revealed a tube plastic macrodeformation, surface damaged and signs of a possible corrosion process. Fracture surface was also inspected by scanning electron microscopy (FE-SEM), equipped with an energy-dispersive X-ray microanalysis system (EDX), to determine the microfractographic features in order to find out the failure mechanism involved in the fracture. Fatigue striations, which are typical from a progressive fracture by a fatigue mechanism, were observed. The origin of the fracture was placed in defects located on the outer wall of the tube, leading to a final overload fracture.

National Identity in Connecting the Community through Mural Art for Petronas Dagangangan Berhad

This is a collaborative project of the mural art between The Department of Fine Art from Universiti Teknologi MARA (UiTM) and Petronas Dagangan Berhad (PDB), the most leading retailer and marketer of downstream oil and gas products in Malaysia. Five different states have been identified in showcasing the National Identity of Malaysia at each Petronas gas station; the Air Keroh in Melaka, Pasir Pekan in Kelantan, Pontian in Johor, Simpang Pulai in Perak and also Wakaf Bharu in Terengganu. This project is to analyze the element of national identity that has been demonstrated at the Petronas's Mural. The ultimate aim of the mural is to let the community and local people to be aware about what Malaysians are consists and proud of and how everyone is able to connect with the idea through art. The method that is being explained in this research is by using visual data through research and also self-experience in collecting the visual data in identifying what images are considered as the national identity and idea development and visual analysis is being transferred based upon the visual data collection. In this stage elements and principle of design will be the key in highlighting what is necessary in a work of art. In conclusion, image of the National Identity of Malaysia is able to connect to the audience from local and also to the people from outside the country to learn and understand the beauty and diversity of Malaysia as a unique country with art, through the wall of five Petronas gas stations.

Elegant: An Intuitive Software Tool for Interactive Learning of Power System Analysis

A common complaint from power system analysis students lies in the overly complex tools they need to learn and use just to simulate very basic systems or just to check the answers to power system calculations. The most basic power system studies are power-flow solutions and short-circuit calculations. This paper presents a simple tool with an intuitive interface to perform both these studies and assess its performance in comparison with existent commercial solutions. With this in mind, Elegant is a pure Python software tool for learning power system analysis developed for undergraduate and graduate students. It solves the power-flow problem by iterative numerical methods and calculates bolted short-circuit fault currents by modeling the network in the domain of symmetrical components. Elegant can be used with a user-friendly Graphical User Interface (GUI) and automatically generates human-readable reports of the simulation results. The tool is exemplified using a typical Brazilian regional system with 18 buses. This study performs a comparative experiment with 1 undergraduate and 4 graduate students who attempted the same problem using both Elegant and a commercial tool. It was found that Elegant significantly reduces the time and labor involved in basic power system simulations while still providing some insights into real power system designs.

Influence of Wall Stiffness and Embedment Depth on Excavations Supported by Cantilever Walls

Ground deformations in deep excavations are affected by wall stiffness and pile embedment ratio. This paper presents the findings of a parametric study of a 64-ft deep excavation in mixed stiff soil conditions supported by cantilever pile wall. A series of finite element analysis has been carried out in Plaxis 2D by varying the pile embedment ratio and wall stiffness. It has been observed that maximum wall deflections decrease by increasing the embedment ratio up to 1.50; however, any further increase in pile length does not improve the performance of the wall. Similarly, increasing wall stiffness reduces the wall deformations and affects the deflection patterns of the wall. The finite element analysis results are compared with the field data of 25 case studies of cantilever walls. Analysis results fall within the range of normalized wall deflections of the 25 case studies. It has been concluded that deep excavations can be supported by cantilever walls provided the system stiffness is increased significantly.

Early Age Behavior of Wind Turbine Gravity Foundations

Wind turbine gravity foundations are designed to resist overturning failure through gravitational forces resulting from their masses. Owing to the relatively high volume of the cementitious material present, the foundations tend to suffer thermal strains and internal cracking due to high temperatures and temperature gradients depending on factors such as geometry, mix design and level of restraint. This is a result of a fully coupled mechanism commonly known as THMC (Thermo- Hygro - Mechanical - Chemical) coupling whose kinetics peak during the early age of concrete. The focus of this paper is therefore to present and offer a discussion on the temperature and humidity evolutions occurring in mass pours such as wind turbine gravity foundations based on sensor results obtained from the monitoring of an actual wind turbine foundation. To offer prediction of the evolutions, the formulation of a 3D Thermal-Hydro-Chemical (THC) model that is mainly derived from classical fundamental physical laws is also presented and discussed. The THC model can be mathematically fully coupled in Finite Element analyses. In the current study, COMSOL Multi-physics software was used to simulate the 3D THC coupling that occurred in the monitored wind turbine foundation to predict the temperature evolution at five different points within the foundation from time of casting.

Utilization of Schnerr-Sauer Cavitation Model for Simulation of Cavitation Inception and Super Cavitation

In this study, the Reynolds-Stress-Navier-Stokes framework is utilized to investigate the flow inside the diesel injector nozzle. The flow is assumed to be multiphase as the formation of vapor by pressure drop is visualized. For pressure and velocity linkage, the coupled algorithm is used. Since the cavitation phenomenon inherently is unsteady, the quasi-steady approach is utilized for saving time and resources in the current study. Schnerr-Sauer cavitation model is used, which was capable of predicting flow behavior both at the initial and final steps of the cavitation process. Two different turbulent models were used in this study to clarify which one is more capable in predicting cavitation inception and super-cavitation. It was found that K-ε was more compatible with the Shnerr-Sauer cavitation model; therefore, the mentioned model is used for the rest of this study.

The Role of People and Data in Complex Spatial-Related Long-Term Decisions: A Case Study of Capital Project Management Groups

Significant long-term investment projects can involve complex decisions. These are often described as capital projects and the factors that contribute to their complexity include budgets, motivating reasons for investment, stakeholder involvement, interdependent projects, and the delivery phases required. The complexity of these projects often requires management groups to be established involving stakeholder representatives, these teams are inherently multidisciplinary. This study uses two university campus capital projects as case studies for this type of management group. Due to the interaction of projects with wider campus infrastructure and users, decisions are made at varying spatial granularity throughout the project lifespan. This spatial-related context brings complexity to the group decisions. Sensemaking is the process used to achieve group situational awareness of a complex situation, enabling the team to arrive at a consensus and make a decision. The purpose of this study is to understand the role of people and data in complex spatial related long-term decision and sensemaking processes. The paper aims to identify and present issues experienced in practical settings of these types of decision. A series of exploratory semi-structured interviews with members of the two projects elicit an understanding of their operation. From two stages of thematic analysis, inductive and deductive, emergent themes are identified around the group structure, the data usage, and the decision making within these groups. When data were made available to the group, there were commonly issues with perception of veracity and validity of the data presented; this impacted the ability of the group to reach consensus and therefore for decision to be made. Similarly, there were different responses to forecasted or modelled data, shaped by the experience and occupation of the individuals within the multidisciplinary management group. This paper provides an understanding of further support required for team sensemaking and decision making in complex capital projects. The paper also discusses the barriers found to effective decision making in this setting and suggests opportunities to develop decision support systems in this team strategic decision-making process. Recommendations are made for further research into the sensemaking and decision-making process of this complex spatial-related setting.

Depth Estimation in DNN Using Stereo Thermal Image Pairs

Depth estimation using stereo images is a challenging problem in computer vision. Many different studies have been carried out to solve this problem. With advancing machine learning, tackling this problem is often done with neural network-based solutions. The images used in these studies are mostly in the visible spectrum. However, the need to use the Infrared (IR) spectrum for depth estimation has emerged because it gives better results than visible spectra in some conditions. At this point, we recommend using thermal-thermal (IR) image pairs for depth estimation. In this study, we used two well-known networks (PSMNet, FADNet) with minor modifications to demonstrate the viability of this idea.