Abstract: This paper studies a failure case of a fuel pressure supply tube from an aircraft engine. Multiple fracture cases of the fuel pressure control tube from aircraft engines have been reported. The studied set was composed by the mentioned tube, a welded connecting pipe, where the fracture has been produced, and a union nut. The fracture has been produced in one of the most critical zones of the tube, in a region next to the supporting body of the union nut to the connector. The tube material was X6CrNiTi18-10, an austenitic stainless steel. Chemical composition was determined using an X-Ray fluorescence spectrometer (XRF) and combustion equipment. Furthermore, the material was characterized mechanically, by a hardness test, and microstructurally using a stereo microscope and an optical microscope. The results confirmed that the material was within specifications. To determine the macrofractographic features, a visual examination and an observation using a stereo microscope of the tube fracture surface were carried out. The results revealed a tube plastic macrodeformation, surface damaged and signs of a possible corrosion process. Fracture surface was also inspected by scanning electron microscopy (FE-SEM), equipped with an energy-dispersive X-ray microanalysis system (EDX), to determine the microfractographic features in order to find out the failure mechanism involved in the fracture. Fatigue striations, which are typical from a progressive fracture by a fatigue mechanism, were observed. The origin of the fracture was placed in defects located on the outer wall of the tube, leading to a final overload fracture.
Abstract: Methanol-to-propylene conversion was carried out in a continuous-flow fixed-bed reactor over nano-sized HZSM-5 zeolites. The HZSM-5 catalysts were synthesized with different Si/Al ratio and silicon sources, and treated with NaOH. The structural property, morphology, and acidity of catalysts were measured by XRD, N2 adsorption, FE-SEM, TEM, and NH3-TPD. The results indicate that the increment of Si/Al ratio decreased the acidity of catalysts and then improved propylene selectivity, while silicon sources had slight impact on the acidity but affected the product distribution. The desilication after alkali treatment could increase intracrystalline mesopores and enhance propylene selectivity.
Abstract: The effect of gamma ray irradiation on morphology and optical properties of ZnO/Mesoporous silica (MPS) nanocomposite was studied. The ZnO/MPS nanocomposite was irradiated with gamma rays of doses 30, 60, and 90 kGy and dose-rate of irradiation was 0.15 kGy/hour. Irradiated samples are characterized with FE-SEM, FT-IR, UV-vis, and Photoluminescence (PL) spectrometers. SEM pictures showed that morphology changed from spherical to flake like morphology. UV-vis analysis showed that the band gap increased with increase of gamma ray irradiation dose. This enhancement of the band gap is assigned to the depletion of oxygen vacancies with irradiation. The intensity of PL peak decreased gradually with increase of gamma ray irradiation dose. The decrease in PL intensity is attributed to the decrease of oxygen vacancies at the interface due to poor interface and improper passivation between ZnO/MPS.
Abstract: Synthesizing supercritical carbon dioxide (scCO2) soluble precursors would be helpful for many processes of material syntheses based on scCO2. Ligand (amphi-(1Z, 2Z)-N-(2-fluoro-3-(trifluoromethyl) phenyl)-N'-hydroxy-2-(hydroxyimino) were synthesized from chloro glyoxime and flourus aniline and Pd(II) complex (precursor) prepared. For scCO2 deposition method, organometallic precursor was dissolved in scCO2 and impregnated onto the SBA-15 at 90 °C and 3000 psi. Then the organometallic precursor was reduced with H2 in the CO2 mixture (150 psi H2 + 2850 psi CO2). Pd deposited support material was characterized by ICP-OES, XRD, FE-SEM, TEM and EDX analyses. The Pd loading of the prepared catalyst, measured by ICP-OES showed a value of about 1.64% mol/g Pd of catalyst. Average particle size was found 5.3 nm. The catalytic activity of prepared catalyst was investigated over Suzuki-Miyaura C-C coupling reaction in different solvent with K2CO3 at 50 oC. The conversion ratio was determined by gas chromatography.
Abstract: Many studies have been conducted on DC transmission. Of power apparatus for DC transmission, high voltage direct current (HVDC) cable systems are being evaluated because of the increase in power demand and transmission distance. Therefore, dc insulation characteristics of liquid silicone rubber (LSR), which has various advantages such as short curing time and the ease of maintenance, were investigated to assess its performance as a HVDC insulation material for cable joints. The electrical performance of LSR added to nano-aluminum trihydrate (ATH) were confirmed by measurements of the breakdown strength and electrical conductivity. In addition, field emission scanning electron microscope (FE-SEM) was used as a means of confirmation of nanofiller dispersion state. The LSR nanocomposite was prepared by compounding LSR filled nano-sized ATH filler. The dc insulation properties of LSR added to nano-sized ATH fillers were found to be superior to those of the LSR without a filler.
Abstract: Zinc oxide thin films with various microstructures
were grown on substrates by using HCOOH-sols. The reaction
mechanism of the sol system was investigated by performing an XPS
analysis of as-synthesized films, due to the products of hydrolysis
and condensation in the sol system contributing to the chemical state
of the as-synthesized films. The chemical structures of the assynthesized
films related to the microstructures of the final annealed
films were also studied. The results of the Zn 2p3/2, C 1s and O1s
XPS patterns indicate that the hydrolysis reaction in the sol system is
strongly influenced by the HCOOH agent. The results of XRD and
FE-SEM demonstrated the microstructures of the annealed films are
related to the content of hydrolyzed zinc hydrate (Zn-OH) species
present, and that content of the Zn-OH species in the sol system
increases the HCOOH adding, and these Zn-OH species existing in
the sol phase are responsible for large ZnO crystallites in the final
annealed films.
Abstract: Highly ordered TiO2 nanotube (TNT) arrays were
fabricated onto a pre-treated titanium foil by anodic oxidation with a
voltage of 20V in phosphoric acid/sodium fluoride electrolyte. A pretreatment
of titanium foil involved washing with acetone,
isopropanol, ethanol and deionized water. Carbon doped TiO2
nanotubes (C-TNT) was fabricated 'in-situ' with the same method in
the presence of polyvinyl alcohol and urea as carbon sources. The
affects of polyvinyl alcohol concentration and oxidation time on the
composition, morphology and structure of the C-TN were studied by
FE-SEM, EDX and XRD techniques. FESEM images of the
nanotubes showed uniform arrays of C-TNTs. The density and
microstructures of the nanotubes were greatly affected by the content
of PVA. The introduction of the polyvinyl alcohol into the electrolyte
increases the amount of C content inside TiO2 nanotube arrays
uniformly. The influence of carbon content on the photo-current of
C-TNT was investigated and the I-V profiles of the nanotubes were
established. The preliminary results indicated that the 'in-situ'
doping technique produced a superior quality nanotubes compared to
post doping techniques.
Abstract: Polymeric microreactors have emerged as a new
generation of carriers that hold tremendous promise in the areas of
cancer therapy, controlled delivery of drugs, for removal of
pollutants etc. Present work reports a simple and convenient
methodology for synthesis of polystyrene and poly caprolactone
microreactors. An aqueous suspension of carboxylated (1μm)
polystyrene latex particles was mixed with toluene solution followed
by freezing with liquid nitrogen. Freezed particles were incubated at
-20°C and characterized for formation of voids on the surface of
polymer microspheres by Field Emission Scanning Electron
Microscope. The hollow particles were then overnight incubated at
40ºC with unfunctionalized quantum dots (QDs) in 5:1 ratio. QDs
Encapsulated polystyrene microcapsules were characterized by
fluorescence microscopy.
Likewise Poly ε-caprolactone microreactors were prepared by
micro-volcanic rupture of freeze dried microspheres synthesized
using emulsification of polymer with aqueous Poly vinyl alcohol and
freezed with liquid nitrogen. Microreactors were examined with Field
Emission Scanning Electron Microscope for size and morphology.
Current study is an attempt to create hollow polymer particles which
can be employed for microencapsulation of nanoparticles and drug
molecules.