Abstract: Fused Deposition Modelling (FDM) is one of the additive manufacturing techniques that has become highly attractive in the industrial and academic sectors. However, parts fabricated through FDM are highly susceptible to geometrical defects such as warpage, shrinkage, and delamination that can severely affect their function. Among the thermoplastic polymer feedstock for FDM, semi-crystalline polymers are highly prone to part distortion due to polymer crystallization. In this study, the influence of FDM processing conditions such as chamber temperature and print bed temperature on the induced thermal residual stress and resulting warpage are investigated using 3D transient thermal model for a semi-crystalline polymer. The thermo-mechanical properties and the viscoelasticity of the polymer, as well as the crystallization physics which considers the crystallinity of the polymer, are coupled with the evolving temperature gradient of the print model. From the results it was observed that increasing the chamber temperature from 25 °C to 75 °C leads to a decrease of 3.3% residual stress and increase of 0.4% warpage, while decreasing bed temperature from 100 °C to 60 °C resulted in 27% increase in residual stress and a significant rise of 137% in warpage. The simulated warpage data are validated by comparing it with the measured warpage values of the samples using 3D scanning.
Abstract: Moulded parts contribute to more than 70% of
components in products. However, common defects particularly in
plastic injection moulding exist such as: warpage, shrinkage, sink
marks, and weld lines. In this paper Taguchi experimental design
methods are applied to reduce the warpage defect of thin plate
Acrylonitrile Butadiene Styrene (ABS) and are demonstrated in two
levels; namely, orthogonal arrays of Taguchi and the Analysis of
Variance (ANOVA). Eight trials have been run in which the optimal
parameters that can minimize the warpage defect in factorial
experiment are obtained. The results obtained from ANOVA
approach analysis with respect to those derived from MINITAB
illustrate the most significant factors which may cause warpage in
injection moulding process. Moreover, ANOVA approach in
comparison with other approaches like S/N ratio is more accurate and
with the interaction of factors it is possible to achieve higher and the
better outcomes.