An Analytical Electron Mobility Model based on Particle Swarm Computation for Siliconbased Devices

The study of the transport coefficients in electronic devices is currently carried out by analytical and empirical models. This study requires several simplifying assumptions, generally necessary to lead to analytical expressions in order to study the different characteristics of the electronic silicon-based devices. Further progress in the development, design and optimization of Silicon-based devices necessarily requires new theory and modeling tools. In our study, we use the PSO (Particle Swarm Optimization) technique as a computational tool to develop analytical approaches in order to study the transport phenomenon of the electron in crystalline silicon as function of temperature and doping concentration. Good agreement between our results and measured data has been found. The optimized analytical models can also be incorporated into the circuits simulators to study Si-based devices without impact on the computational time and data storage.

Towards Development of Solution for Business Process-Oriented Data Analysis

This paper proposes a modeling methodology for the development of data analysis solution. The Author introduce the approach to address data warehousing issues at the at enterprise level. The methodology covers the process of the requirements eliciting and analysis stage as well as initial design of data warehouse. The paper reviews extended business process model, which satisfy the needs of data warehouse development. The Author considers that the use of business process models is necessary, as it reflects both enterprise information systems and business functions, which are important for data analysis. The Described approach divides development into three steps with different detailed elaboration of models. The Described approach gives possibility to gather requirements and display them to business users in easy manner.

CAD Based Predictive Models of the Undeformed Chip Geometry in Drilling

Twist drills are geometrical complex tools and thus various researchers have adopted different mathematical and experimental approaches for their simulation. The present paper acknowledges the increasing use of modern CAD systems and using the API (Application Programming Interface) of a CAD system, drilling simulations are carried out. The developed DRILL3D software routine, creates parametrically controlled tool geometries and using different cutting conditions, achieves the generation of solid models for all the relevant data involved (drilling tool, cut workpiece, undeformed chip). The final data derived, consist a platform for further direct simulations regarding the determination of cutting forces, tool wear, drilling optimizations etc.

On the Dynamic Behaviour of a Four-Bar Linkage Driven by a Velocity Controlled DC Motor

The dynamic behaviour of a four-bar linkage driven by a velocity controlled DC motor is discussed in the paper. In particular the author presents the results obtained by means of a specifically developed software, which implements the mathematical models of all components of the system (linkage, transmission, electric motor, control devices). The use of this software enables a more efficient design approach, since it allows the designer to check, in a simple and immediate way, the dynamic behaviour of the mechanism, arising from different values of the system parameters.

CFD Analysis of Two Phase Flow in a Horizontal Pipe – Prediction of Pressure Drop

In designing of condensers, the prediction of pressure drop is as important as the prediction of heat transfer coefficient. Modeling of two phase flow, particularly liquid – vapor flow under diabatic conditions inside a horizontal tube using CFD analysis is difficult with the available two phase models in FLUENT due to continuously changing flow patterns. In the present analysis, CFD analysis of two phase flow of refrigerants inside a horizontal tube of inner diameter, 0.0085 m and 1.2 m length is carried out using homogeneous model under adiabatic conditions. The refrigerants considered are R22, R134a and R407C. The analysis is performed at different saturation temperatures and at different flow rates to evaluate the local frictional pressure drop. Using Homogeneous model, average properties are obtained for each of the refrigerants that is considered as single phase pseudo fluid. The so obtained pressure drop data is compared with the separated flow models available in literature.

Decomposition Method for Neural Multiclass Classification Problem

In this article we are going to discuss the improvement of the multi classes- classification problem using multi layer Perceptron. The considered approach consists in breaking down the n-class problem into two-classes- subproblems. The training of each two-class subproblem is made independently; as for the phase of test, we are going to confront a vector that we want to classify to all two classes- models, the elected class will be the strongest one that won-t lose any competition with the other classes. Rates of recognition gotten with the multi class-s approach by two-class-s decomposition are clearly better that those gotten by the simple multi class-s approach.

A Model for Estimation of Efforts in Development of Software Systems

Software effort estimation is the process of predicting the most realistic use of effort required to develop or maintain software based on incomplete, uncertain and/or noisy input. Effort estimates may be used as input to project plans, iteration plans, budgets. There are various models like Halstead, Walston-Felix, Bailey-Basili, Doty and GA Based models which have already used to estimate the software effort for projects. In this study Statistical Models, Fuzzy-GA and Neuro-Fuzzy (NF) Inference Systems are experimented to estimate the software effort for projects. The performances of the developed models were tested on NASA software project datasets and results are compared with the Halstead, Walston-Felix, Bailey-Basili, Doty and Genetic Algorithm Based models mentioned in the literature. The result shows that the NF Model has the lowest MMRE and RMSE values. The NF Model shows the best results as compared with the Fuzzy-GA based hybrid Inference System and other existing Models that are being used for the Effort Prediction with lowest MMRE and RMSE values.

A Remote Sensing Approach for Vulnerability and Environmental Change in Apodi Valley Region, Northeast Brazil

The objective of this study was to improve our understanding of vulnerability and environmental change; it's causes basically show the intensity, its distribution and human-environment effect on the ecosystem in the Apodi Valley Region, This paper is identify, assess and classify vulnerability and environmental change in the Apodi valley region using a combined approach of landscape pattern and ecosystem sensitivity. Models were developed using the following five thematic layers: Geology, geomorphology, soil, vegetation and land use/cover, by means of a Geographical Information Systems (GIS)-based on hydro-geophysical parameters. In spite of the data problems and shortcomings, using ESRI-s ArcGIS 9.3 program, the vulnerability score, to classify, weight and combine a number of 15 separate land cover classes to create a single indicator provides a reliable measure of differences (6 classes) among regions and communities that are exposed to similar ranges of hazards. Indeed, the ongoing and active development of vulnerability concepts and methods have already produced some tools to help overcome common issues, such as acting in a context of high uncertainties, taking into account the dynamics and spatial scale of asocial-ecological system, or gathering viewpoints from different sciences to combine human and impact-based approaches. Based on this assessment, this paper proposes concrete perspectives and possibilities to benefit from existing commonalities in the construction and application of assessment tools.

Facilitating Cooperative Knowledge Support by Role-Based Knowledge-Flow Views

Effective knowledge support relies on providing operation-relevant knowledge to workers promptly and accurately. A knowledge flow represents an individual-s or a group-s knowledge-needs and referencing behavior of codified knowledge during operation performance. The flow has been utilized to facilitate organizational knowledge support by illustrating workers- knowledge-needs systematically and precisely. However, conventional knowledge-flow models cannot work well in cooperative teams, which team members usually have diverse knowledge-needs in terms of roles. The reason is that those models only provide one single view to all participants and do not reflect individual knowledge-needs in flows. Hence, we propose a role-based knowledge-flow view model in this work. The model builds knowledge-flow views (or virtual knowledge flows) by creating appropriate virtual knowledge nodes and generalizing knowledge concepts to required concept levels. The customized views could represent individual role-s knowledge-needs in teamwork context. The novel model indicates knowledge-needs in condensed representation from a roles perspective and enhances the efficiency of cooperative knowledge support in organizations.

Implementing an Intuitive Reasoner with a Large Weather Database

In this paper, the implementation of a rule-based intuitive reasoner is presented. The implementation included two parts: the rule induction module and the intuitive reasoner. A large weather database was acquired as the data source. Twelve weather variables from those data were chosen as the “target variables" whose values were predicted by the intuitive reasoner. A “complex" situation was simulated by making only subsets of the data available to the rule induction module. As a result, the rules induced were based on incomplete information with variable levels of certainty. The certainty level was modeled by a metric called "Strength of Belief", which was assigned to each rule or datum as ancillary information about the confidence in its accuracy. Two techniques were employed to induce rules from the data subsets: decision tree and multi-polynomial regression, respectively for the discrete and the continuous type of target variables. The intuitive reasoner was tested for its ability to use the induced rules to predict the classes of the discrete target variables and the values of the continuous target variables. The intuitive reasoner implemented two types of reasoning: fast and broad where, by analogy to human thought, the former corresponds to fast decision making and the latter to deeper contemplation. . For reference, a weather data analysis approach which had been applied on similar tasks was adopted to analyze the complete database and create predictive models for the same 12 target variables. The values predicted by the intuitive reasoner and the reference approach were compared with actual data. The intuitive reasoner reached near-100% accuracy for two continuous target variables. For the discrete target variables, the intuitive reasoner predicted at least 70% as accurately as the reference reasoner. Since the intuitive reasoner operated on rules derived from only about 10% of the total data, it demonstrated the potential advantages in dealing with sparse data sets as compared with conventional methods.

Seismic Vulnerability Assessment of Buildings in Algiers Area

Several models of vulnerability assessment have been proposed. The selection of one of these models depends on the objectives of the study. The classical methodologies for seismic vulnerability analysis, as a part of seismic risk analysis, have been formulated with statistical criteria based on a rapid observation. The information relating to the buildings performance is statistically elaborated. In this paper, we use the European Macroseismic Scale EMS-98 to define the relationship between damage and macroseismic intensity to assess the seismic vulnerability. Applying to Algiers area, the first step is to identify building typologies and to assign vulnerability classes. In the second step, damages are investigated according to EMS-98.

Using Radial Basis Function Neural Networks to Calibrate Water Quality Model

Modern managements of water distribution system (WDS) need water quality models that are able to accurately predict the dynamics of water quality variations within the distribution system environment. Before water quality models can be applied to solve system problems, they should be calibrated. Although former researchers use GA solver to calibrate relative parameters, it is difficult to apply on the large-scale or medium-scale real system for long computational time. In this paper a new method is designed which combines both macro and detailed model to optimize the water quality parameters. This new combinational algorithm uses radial basis function (RBF) metamodeling as a surrogate to be optimized for the purpose of decreasing the times of time-consuming water quality simulation and can realize rapidly the calibration of pipe wall reaction coefficients of chlorine model of large-scaled WDS. After two cases study this method is testified to be more efficient and promising, and deserve to generalize in the future.

Real-Time Physics Simulation Packages: An Evaluation Study

This paper includes a review of three physics simulation packages that can be used to provide researchers with a virtual ground for modeling, implementing and simulating complex models, as well as testing their control methods with less cost and time of development. The inverted pendulum model was used as a test bed for comparing ODE, DANCE and Webots, while Linear State Feedback was used to control its behavior. The packages were compared with respect to model creation, solving systems of differential equation, data storage, setting system variables, control the experiment and ease of use. The purpose of this paper is to give an overview about our experience with these environments and to demonstrate some of the benefits and drawbacks involved in practice for each package.

Implied Adjusted Volatility by Leland Option Pricing Models: Evidence from Australian Index Options

With the implied volatility as an important factor in financial decision-making, in particular in option pricing valuation, and also the given fact that the pricing biases of Leland option pricing models and the implied volatility structure for the options are related, this study considers examining the implied adjusted volatility smile patterns and term structures in the S&P/ASX 200 index options using the different Leland option pricing models. The examination of the implied adjusted volatility smiles and term structures in the Australian index options market covers the global financial crisis in the mid-2007. The implied adjusted volatility was found to escalate approximately triple the rate prior the crisis.

Advance in Monitoring and Process Control of Surface Roughness

This paper presents an advance in monitoring and process control of surface roughness in CNC machine for the turning and milling processes. An integration of the in-process monitoring and process control of the surface roughness is proposed and developed during the machining process by using the cutting force ratio. The previously developed surface roughness models for turning and milling processes of the author are adopted to predict the inprocess surface roughness, which consist of the cutting speed, the feed rate, the tool nose radius, the depth of cut, the rake angle, and the cutting force ratio. The cutting force ratios obtained from the turning and the milling are utilized to estimate the in-process surface roughness. The dynamometers are installed on the tool turret of CNC turning machine and the table of 5-axis machining center to monitor the cutting forces. The in-process control of the surface roughness has been developed and proposed to control the predicted surface roughness. It has been proved by the cutting tests that the proposed integration system of the in-process monitoring and the process control can be used to check the surface roughness during the cutting by utilizing the cutting force ratio.

Discovery of Human HMG-Coa Reductase Inhibitors Using Structure-Based Pharmacophore Modeling Combined with Molecular Dynamics Simulation Methodologies

3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGR) catalyzes the conversion of HMG-CoA to mevalonate using NADPH and the enzyme is involved in rate-controlling step of mevalonate. Inhibition of HMGR is considered as effective way to lower cholesterol levels so it is drug target to treat hypercholesterolemia, major risk factor of cardiovascular disease. To discover novel HMGR inhibitor, we performed structure-based pharmacophore modeling combined with molecular dynamics (MD) simulation. Four HMGR inhibitors were used for MD simulation and representative structure of each simulation were selected by clustering analysis. Four structure-based pharmacophore models were generated using the representative structure. The generated models were validated used in virtual screening to find novel scaffolds for inhibiting HMGR. The screened compounds were filtered by applying drug-like properties and used in molecular docking. Finally, four hit compounds were obtained and these complexes were refined using energy minimization. These compounds might be potential leads to design novel HMGR inhibitor.

Video Data Mining based on Information Fusion for Tamper Detection

In this paper, we propose novel algorithmic models based on information fusion and feature transformation in crossmodal subspace for different types of residue features extracted from several intra-frame and inter-frame pixel sub-blocks in video sequences for detecting digital video tampering or forgery. An evaluation of proposed residue features – the noise residue features and the quantization features, their transformation in cross-modal subspace, and their multimodal fusion, for emulated copy-move tamper scenario shows a significant improvement in tamper detection accuracy as compared to single mode features without transformation in cross-modal subspace.

Estimating the Absorption of Volatile Organic Compounds in Four Biodiesels Using the UNIFAC Procedure

This work considered the thermodynamic feasibility of scrubbing volatile organic compounds into biodiesel in view of designing a gas treatment process with this absorbent. A detailed vapour – liquid equilibrium investigation was performed using the original UNIFAC group contribution method. The four biodiesels studied in this work are methyl oleate, methyl palmitate, methyl linolenate and ethyl stearate. The original UNIFAC procedure was used to estimate the infinite dilution activity coefficients of 13 selected volatile organic compounds in the biodiesels. The calculations were done at the VOC mole fraction of 9.213x10-8. Ethyl stearate gave the most favourable phase equilibrium. A close agreement was found between the infinite dilution activity coefficient of toluene found in this work and those reported in literature. Thermodynamic models can efficiently be used to calculate vast amount of phase equilibrium behaviour using limited number of experimental data.

The Development of Decision Support System for Waste Management; a Review

Most Decision Support Systems (DSS) for waste management (WM) constructed are not widely marketed and lack practical applications. This is due to the number of variables and complexity of the mathematical models which include the assumptions and constraints required in decision making. The approach made by many researchers in DSS modelling is to isolate a few key factors that have a significant influence to the DSS. This segmented approach does not provide a thorough understanding of the complex relationships of the many elements involved. The various elements in constructing the DSS must be integrated and optimized in order to produce a viable model that is marketable and has practical application. The DSS model used in assisting decision makers should be integrated with GIS, able to give robust prediction despite the inherent uncertainties of waste generation and the plethora of waste characteristics, and gives optimal allocation of waste stream for recycling, incineration, landfill and composting.

Comparative Study of Decision Trees and Rough Sets Theory as Knowledge ExtractionTools for Design and Control of Industrial Processes

General requirements for knowledge representation in the form of logic rules, applicable to design and control of industrial processes, are formulated. Characteristic behavior of decision trees (DTs) and rough sets theory (RST) in rules extraction from recorded data is discussed and illustrated with simple examples. The significance of the models- drawbacks was evaluated, using simulated and industrial data sets. It is concluded that performance of DTs may be considerably poorer in several important aspects, compared to RST, particularly when not only a characterization of a problem is required, but also detailed and precise rules are needed, according to actual, specific problems to be solved.