Pyrite from Zones of Mz-Kz Reactivation of Large Faults on the Eastern Slope of the Ural Mountains, Russia

Pyritisation halos are identified in weathering crusts and unconsolidated formations at five locations within large fault structure of the Urals’ eastern slope. Electron microscopy reveals the presence of inclusions and growths on pyrite faces – normally on cubic pyrite with striations, or combinations of cubes and other forms. Following neogenesis types are established: native elements and intermetallic compounds (including gold and silver), halogenides, sulphides, sulfosalts, tellurides, sulphotellurides, selenides, tungstates, sulphates, phosphates, carbon-based substances. Direct relationship is noted between amount and diversity of such mineral phases, and proximity to and scale of ore-grade mineralization. Gold and silver, both in native form and within tellurides, presence of lead (galena, native lead), native tungsten, and, possibly, molybdenite and sulfosalts can indicate gold-bearing formations. First find of native tungsten in the Urals is for the first time – in crystallised and druse-like form. Link is suggested between unusual mineralization and “reducing” hydrothermal fluids from deep-seated faults at later stages of Urals’ reactivation. 

Extraction of Phenol, o-Cresol, and p-Cresol from Coal Tar: Effect of Temperature and Mixing

Coal tar is a liquid by-product of the process of coal gasification and carbonation. This liquid oil mixture contains various kinds of useful compounds such as phenol, o-cresol, and p-cresol. These compounds are widely used as raw material for insecticides, dyes, medicines, perfumes, coloring matters, and many others. This research needed to be done that given the optimum conditions for the separation of phenol, o-cresol, and p-cresol from the coal tar by solvent extraction process. The aim of the present work was to study the effect of two kinds of aqueous were used as solvents: methanol and acetone solutions, the effect of temperature (298, 306, and 313K) and mixing (30, 35, and 40rpm) for the separation of phenol, o-cresol, and p-cresol from coal tar by solvent extraction. Results indicated that phenol, o-cresol, and p-cresol in coal tar were selectivity extracted into the solvent phase and these components could be separated by solvent extraction. The aqueous solution of methanol, mass ratio of solvent to feed, Eo/Ro=1, extraction temperature 306K and mixing 35 rpm were the most efficient for extraction of phenol, o-cresol, and p-cresol from coal tar.

Analysis on Influence of Gravity on Convection Heat Transfer in Manned Spacecraft during Terrestrial Test

How to simulate experimentally the air flow and heat transfer under microgravity on the ground is important, which has not been completely solved so far. Influence of gravity on air natural convection results in convection heat transfer on ground difference from that on orbit. In order to obtain air temperature and velocity deviations of manned spacecraft during terrestrial thermal test, dimensionless number analysis and numerical simulation analysis are performed. The calculated temperature distribution and velocity distribution of the horizontal test cases are compared to the vertical cases. The results show that the influence of gravity is neglected for facility drawer racks and more obvious for vertical cabins.

Integration of Resistive Switching Memory Cell with Vertical Nanowire Transistor

We integrate TiN/Ni/HfO2/Si RRAM cell with a vertical gate-all-around (GAA) nanowire transistor to achieve compact 4F2 footprint in a 1T1R configuration. The tip of the Si nanowire (source of the transistor) serves as bottom electrode of the memory cell. Fabricated devices with nanowire diameter ~ 50nm demonstrate ultra-low current/power switching; unipolar switching with 10μA/30μW SET and 20μA/30μW RESET and bipolar switching with 20nA/85nW SET and 0.2nA/0.7nW RESET. Further, the switching current is found to scale with nanowire diameter making the architecture promising for future scaling.

Two Dimensional Simulation of Fluid Flow and Heat Transfer in the Transition Flow Regime using a Lattice Boltzmann Approach

The significant effects of the interactions between the system boundaries and the near wall molecules in miniaturized gaseous devices lead to the formation of the Knudsen layer in which the Navier-Stokes-Fourier (NSF) equations fail to predict the correct associated phenomena. In this paper, the well-known lattice Boltzmann method (LBM) is employed to simulate the fluid flow and heat transfer processes in rarefied gaseous micro media. Persuaded by the problematic deficiency of the LBM in capturing the Knudsen layer phenomena, present study tends to concentrate on the effective molecular mean free path concept the main essence of which is to compensate the incapability of this mesoscopic method in dealing with the momentum and energy transport within the above mentioned kinetic boundary layer. The results show qualitative and quantitative accuracy comparable to the solutions of the linearized Boltzmann equation or the DSMC data for the Knudsen numbers of O (1) .

FPGA Implementation of the “PYRAMIDS“ Block Cipher

The “PYRAMIDS" Block Cipher is a symmetric encryption algorithm of a 64, 128, 256-bit length, that accepts a variable key length of 128, 192, 256 bits. The algorithm is an iterated cipher consisting of repeated applications of a simple round transformation with different operations and different sequence in each round. The algorithm was previously software implemented in Cµ code. In this paper, a hardware implementation of the algorithm, using Field Programmable Gate Arrays (FPGA), is presented. In this work, we discuss the algorithm, the implemented micro-architecture, and the simulation and implementation results. Moreover, we present a detailed comparison with other implemented standard algorithms. In addition, we include the floor plan as well as the circuit diagrams of the various micro-architecture modules.

Natural Gas Sweetening by Wetted-Wire Column

Natural gas usually includes H2S component which is very toxic, hazardous and corrosive to environment, human being and process equipments, respectively. Therefore, sweetening of the gas (separation of H2S) is inevitable. To achieve this purpose, using packed-bed columns with liquid absorbents such as MEA or DEA is very common. Due to some problems of usual packed columns especially high pressure drop of gas phase, a novel kind of them called wetted-wire column (WWC) has been invented. The column decreases the pressure drop significantly and improves the absorption efficiency. The packings are very thin rods (like wire) and as long as column. The column has 100 wires with a triangular arrangement and counter current flows of gas and liquid phases. The observation showed that at the same conditions, the absorption performance was quite comparable to conventional packed-bed towers and a very low pressure drop.

Spacecraft Neural Network Control System Design using FPGA

Designing and implementing intelligent systems has become a crucial factor for the innovation and development of better products of space technologies. A neural network is a parallel system, capable of resolving paradigms that linear computing cannot. Field programmable gate array (FPGA) is a digital device that owns reprogrammable properties and robust flexibility. For the neural network based instrument prototype in real time application, conventional specific VLSI neural chip design suffers the limitation in time and cost. With low precision artificial neural network design, FPGAs have higher speed and smaller size for real time application than the VLSI and DSP chips. So, many researchers have made great efforts on the realization of neural network (NN) using FPGA technique. In this paper, an introduction of ANN and FPGA technique are briefly shown. Also, Hardware Description Language (VHDL) code has been proposed to implement ANNs as well as to present simulation results with floating point arithmetic. Synthesis results for ANN controller are developed using Precision RTL. Proposed VHDL implementation creates a flexible, fast method and high degree of parallelism for implementing ANN. The implementation of multi-layer NN using lookup table LUT reduces the resource utilization for implementation and time for execution.

A Meta-Analytic Path Analysis of e-Learning Acceptance Model

This study reports results of a meta-analytic path analysis e-learning Acceptance Model with k = 27 studies, Databases searched included Information Sciences Institute (ISI) website. Variables recorded included perceived usefulness, perceived ease of use, attitude toward behavior, and behavioral intention to use e-learning. A correlation matrix of these variables was derived from meta-analytic data and then analyzed by using structural path analysis to test the fitness of the e-learning acceptance model to the observed aggregated data. Results showed the revised hypothesized model to be a reasonable, good fit to aggregated data. Furthermore, discussions and implications are given in this article.

Theoretical Investigations on Different Casing and Rotor Diameters Ratio to Optimize Shaft Output of a Vaned Type Air Turbine

This paper details a new concept of using compressed air as a potential zero pollution power source for motorbikes. In place of an internal combustion engine, the motorbike is equipped with an air turbine transforms the energy of the compressed air into shaft work. The mathematical modeling and performance evaluation of a small capacity compressed air driven vaned type novel air turbine is presented in this paper. The effect of isobaric admission and adiabatic expansion of high pressure air for different rotor diameters, casing diameters and ratio of rotor to casing diameters of the turbine have been considered and analyzed. It is concluded that the work output is found optimum for some typical values of rotor / casing diameter ratios. In this study, the maximum power works out to 3.825 kW (5.20 HP) for casing diameter of 200 mm and rotor to casing diameter ratio of 0.65 to 0.60 which is sufficient to run motorbike.

Investigation of Anti-diabetic and Hypocholesterolemic Potential of Psyllium Husk Fiber (Plantago psyllium) in Diabetic and Hypercholesterolemic Albino Rats

The present study was conducted to observe the effect of Plantago psyllium on blood glucose and cholesterol levels in normal and alloxan induced diabetic rats. To investigate the effect of Plantago psyllium 40 rats were included in this study divided into four groups of ten rats in each group. One group A was normal, second group B was diabetic, third group C was non diabetic and hypercholesterolemic and fourth group D was diabetic and hypercholesterolemic. Two groups B and D were made diabetic by intraperitonial injection of alloxan dissolved in 1mL distilled water at a dose of 125mg/Kg of body weight. Two groups C and D were made hypercholesterolemic by oral administration of powder cholesterol (1g/Kg of body weight). The blood samples from all the rats were collected from coccygial vein on 1st day, then on 21st and 42nd day respectively. All the samples were analyzed for blood glucose and cholesterol level by using enzymatic kits. The blood glucose and cholesterol levels of treated groups of rats showed significant reduction after 7 weeks of treatment with Plantago psyllium. By statistical analysis of results it was found that Plantago psyllium has anti-diabetic and hypocholesterolemic activity in diabetic and hypercholesterolemic albino rats.

An Investigation into Ozone Concentration at Urban and Rural Monitoring Stations in Malaysia

This study investigated the relationship between urban and rural ozone concentrations and quantified the extent to which ambient rural conditions and the concentrations of other pollutants can be used to predict urban ozone concentrations. The study describes the variations of ozone in weekday and weekends as well as the daily maximum recorded at selected monitoring stations. The results showed that Putrajaya station had the highest concentrations of O3 on weekend due the titration of NO during the weekday. Additionally, Jerantut had the lowest average concentration with a reading value high on Wednesdays. The comparisons of average and maximum concentrations of ozone for the three stations showed that the strongest significant correlation is recorded in Jerantut station with the value R2= 0.769. Ozone concentrations originating from a neighbouring urban site form a better predictor to the urban ozone concentrations than widespread rural ozone at some levels of temporal averaging. It is found that in urban and rural of Malaysian peninsular, the concentration of ozone depends on the concentration of NOx and seasonal meteorological factors. The HYSPLIT Model (the northeast monsoon) showed that the wind direction can also influence the concentration of ozone in the atmosphere in the studied areas.

A Goal-Oriented Social Business Process Management Framework

Social Business Process Management (SBPM) promises to overcome limitations of traditional BPM by allowing flexible process design and enactment through the involvement of users from a social community. This paper proposes a meta-model and architecture for socially driven business process management systems. It discusses the main facets of the architecture such as goalbased role assignment that combines social recommendations with user profile, and process recommendation, through a real example of a charity organization.

Reducing Power in Error Correcting Code using Genetic Algorithm

This paper proposes a method which reduces power consumption in single-error correcting, double error-detecting checker circuits that perform memory error correction code. Power is minimized with little or no impact on area and delay, using the degrees of freedom in selecting the parity check matrix of the error correcting codes. The genetic algorithm is employed to solve the non linear power optimization problem. The method is applied to two commonly used SEC-DED codes: standard Hamming and odd column weight Hsiao codes. Experiments were performed to show the performance of the proposed method.

Modern /Post-Modern Paradigm and the Current Reflections on Residential Building Exteriors in Cyprus

The main aim of this paper was to investigate the existing architecture in Cyprus, and thus identify and describe the overall architectural rationale of the built environment. In Cyprus, where individuals live in a society that reflects postmodern paradigms rather than modern ones, the existing built environment has many different reflections of the structure of its society.

Numerical Analysis of Electrical Interaction between two Axisymmetric Spheroids

The electrical interaction between two axisymmetric spheroidal particles in an electrolyte solution is examined numerically. A Galerkin finite element method combined with a Newton-Raphson iteration scheme is proposed to evaluate the spatial variation in the electrical potential, and the result obtained used to estimate the interaction energy between two particles. We show that if the surface charge density is fixed, the potential gradient is larger at a point, which has a larger curvature, and if surface potential is fixed, surface charge density is proportional to the curvature. Also, if the total interaction energy against closest surface-to-surface curve exhibits a primary maximum, the maximum follows the order (oblate-oblate) > (sphere-sphere)>(oblate-prolate)>(prolate-prolate), and if the curve has a secondary minimum, the absolute value of the minimum follows the same order.

Union is Strength in Lossy Image Compression

In this work, we present a comparison between different techniques of image compression. First, the image is divided in blocks which are organized according to a certain scan. Later, several compression techniques are applied, combined or alone. Such techniques are: wavelets (Haar's basis), Karhunen-Loève Transform, etc. Simulations show that the combined versions are the best, with minor Mean Squared Error (MSE), and higher Peak Signal to Noise Ratio (PSNR) and better image quality, even in the presence of noise.

Learning Styles of University Students in Bangkok: The Characteristics and the Relevant Instructional Context

The purposes of this study are 1) to identify learning styles of university students in Bangkok, and 2) to study the frequency of the relevant instructional context of the identified learning styles. Learning Styles employed in this study are those of Honey and Mumford, which include 1) Reflectors, 2) Theorists, 3) Pragmatists, and 4) Activists. The population comprises 1383 students and 5 lecturers. Research tools are 2 questionnaires – one used for identifying students- learning styles, and the other used for identifying the frequency of the relevant instructional context of the identified learning styles. The research findings reveal that 32.30 percent - are Activists, while 28.10 percent are Theorists, 20.10 are Reflectors, and 19.50 are Pragmatists. In terms of the relevant instructional context of the identified 4 learning styles, it is found that the frequency level of the instructional context is totally in high level. Moreover, 2 lists of the context being conducted most frequently are 'Lead'in activity to review background knowledge,- and 'Information retrieval report.' And these two activities serve the learning styles of theorists and activists. It is, therefore, suggested that more instructional context supporting the activists, the majority of the population, learning best by doing, as well as emotional learning situation should be added.

Using A Hybrid Algorithm to Improve the Quality of Services in Multicast Routing Problem

A hybrid learning automata-genetic algorithm (HLGA) is proposed to solve QoS routing optimization problem of next generation networks. The algorithm complements the advantages of the learning Automato Algorithm(LA) and Genetic Algorithm(GA). It firstly uses the good global search capability of LA to generate initial population needed by GA, then it uses GA to improve the Quality of Service(QoS) and acquiring the optimization tree through new algorithms for crossover and mutation operators which are an NP-Complete problem. In the proposed algorithm, the connectivity matrix of edges is used for genotype representation. Some novel heuristics are also proposed for mutation, crossover, and creation of random individuals. We evaluate the performance and efficiency of the proposed HLGA-based algorithm in comparison with other existing heuristic and GA-based algorithms by the result of simulation. Simulation results demonstrate that this paper proposed algorithm not only has the fast calculating speed and high accuracy but also can improve the efficiency in Next Generation Networks QoS routing. The proposed algorithm has overcome all of the previous algorithms in the literature.

3D Brain Tumor Segmentation Using Level-Sets Method and Meshes Simplification from Volumetric MR Images

The main objective of this paper is to provide an efficient tool for delineating brain tumors in three-dimensional magnetic resonance images. To achieve this goal, we use basically a level-sets approach to delineating three-dimensional brain tumors. Then we introduce a compression plan of 3D brain structures based for the meshes simplification, adapted for time to the specific needs of the telemedicine and to the capacities restricted by network communication. We present here the main stages of our system, and preliminary results which are very encouraging for clinical practice.