Application of Powder Metallurgy Technologies for Gas Turbine Engine Wheel Production

A detailed analysis has been performed for several schemes of Gas Turbine Wheels production based on additive and powder technologies including metal, ceramic, and stereolithography 3-D printing. During the process of development and debugging of gas turbine engine components, different versions of these components must be manufactured and tested. Cooled blades of the turbine are among of these components. They are usually produced by traditional casting methods. This method requires long and costly design and manufacture of casting molds. Moreover, traditional manufacturing methods limit the design possibilities of complex critical parts of engine, so capabilities of Powder Metallurgy Techniques (PMT) were analyzed to manufacture the turbine wheel with air-cooled blades. PMT dramatically reduce time needed for such production and allow creating new complex design solutions aimed at improving the technical characteristics of the engine: improving fuel efficiency and environmental performance, increasing reliability, and reducing weight. To accelerate and simplify the blades manufacturing process, several options based on additive technologies were used. The options were implemented in the form of various casting equipment for the manufacturing of blades. Methods of powder metallurgy were applied for connecting the blades with the disc. The optimal production scheme and a set of technologies for the manufacturing of blades and turbine wheel and other parts of the engine can be selected on the basis of the options considered.

Resistive Switching Characteristics of Resistive Random Access Memory Devices after Furnace Annealing Processes

In this study, the RRAM devices with the TiN/Ti/HfOx/TiN structure were fabricated, then the electrical characteristics of the devices without annealing and after 400 °C and 500 °C of the furnace annealing (FA) temperature processes were compared. The RRAM devices after the FA’s 400 °C showed the lower forming, set and reset voltages than the other devices without annealing. However, the RRAM devices after the FA’s 500 °C did not show any electrical characteristics because the TiN/Ti/HfOx/TiN device was oxidized, as shown in the XPS analysis. From these results, the RRAM devices after the FA’s 400 °C showed the best electrical characteristics.

Assessing the Impact of Quinoa Cultivation Adopted to Produce a Secure Food Crop and Poverty Reduction by Farmers in Rural Pakistan

Main purpose of this study was to assess adoption level of farmers for quinoa cultivation after they had been taught through training and visit extension approach. At this time of the 21st century, population structure, climate change, food requirements and eating habits of people are changing rapidly. In this scenario, farmers must play their key role in sustainable crop development and production through adoption of new crops that may also be helpful to overcome the issue of food insecurity as well as reducing poverty in rural areas. Its cultivation in Pakistan is at the early stages and there is a need to raise awareness among farmers to grow quinoa crops. In the middle of the 2015, a training and visit extension approach was used to raise awareness and convince farmers to grow quinoa in the area. During training and visit extension program, 80 farmers were randomly selected for the training of quinoa cultivation. Later on, these farmers trained 60 more farmers living into their neighborhood. After six months, a survey was conducted with all 140 farmers to assess the impact of the training and visit program on adoption level of respondents for the quinoa crop. The survey instrument was developed with the help of literature review and other experts of the crop. Validity and reliability of the instrument were checked before complete data collection. The data were analyzed by using SPSS. Multiple regression analysis was used for interpretation of the results from the survey, which indicated that factors like information/ training, change in agronomic and plant protection practices play a key role in the adoption of quinoa cultivation by respondents. In addition, the model explains more than 50% of variation in the adoption level of respondents. It is concluded that farmers need timely information for improved knowledge of agronomic and plant protection practices to adopt cultivation of the quinoa crop in the area.

Data Projects for “Social Good”: Challenges and Opportunities

One of the application fields for data analysis techniques and technologies gaining momentum is the area of social good or “common good”, covering cases related to humanitarian crises, global health care, or ecology and environmental issues, among others. The promotion of data-driven projects in this field aims at increasing the efficacy and efficiency of social initiatives, improving the way these actions help humanity in general and people in need in particular. This application field, however, poses its own barriers and challenges when developing data-driven projects, lagging behind in comparison with other scenarios. These challenges derive from aspects such as the scope and scale of the social issue to solve, cultural and political barriers, the skills of main stakeholders and the technological resources available, the motivation to be engaged in such projects, or the ethical and legal issues related to sensitive data. This paper analyzes the application of data projects in the field of social good, reviewing its current state and noteworthy initiatives, and presenting a framework covering the key aspects to analyze in such projects. The goal is to provide guidelines to understand the main challenges and opportunities for this type of data project, as well as identifying the main differential issues compared to “classical” data projects in general. A case study is presented on the initial steps and stakeholder analysis of a data project for the inclusion of refugees in the city of Frankfurt, Germany, in order to empirically confront the framework with a real example.

Effect of Varying Diets on Growth, Development and Survival of Queen Bee (Apis mellifera L.) in Captivity

Keeping in view the increasing demand, queen of Apis mellifera L. (Hymenoptera: Apidae) was reared artificially in this experiment at varying diets including royal jelly. Larval duration, pupal duration, weight, and size of pupae were evaluated at different diets including royal jelly. Queen larvae were raised by Doo Little grafting method. Four different diets were mixed with royal jelly and applied to larvae. Fructose, sugar, yeast, and honey were provided to rearing queen larvae along with same amount of royal jelly. Larval and pupal duration were longest (6.15 and 7.5 days, respectively) at yeast and shortest on honey (5.05 and 7.02 days, respectively). Heavier and bigger pupae were recorded on yeast (168.14 mg and 1.76 cm, respectively) followed by diets having sugar and honey. Due to production of heavier and bigger pupae, yeast was considered as best artificial diet for the growing queen larvae. So, in the second part of experiment, different amounts of yeast were provided to growing larvae along with fixed amount (0.5 g) of royal jelly. Survival rates of the larvae and queen bee were 70% and 40% in the 4-g food, 86.7% and 53.3% in the 6-g food, and 76.7% and 50% in the 8-g food. Weight of adult queen bee (1.459±0.191 g) and the number of ovarioles (41.7±21.3) were highest at 8 g of food. Results of this study are helpful for bee-keepers in producing fitter queen bees.

Correlation to Predict the Effect of Particle Type on Axial Voidage Profile in Circulating Fluidized Beds

Bed voidage behavior among different flow regimes for Geldart A, B, and D particles (fluid catalytic cracking catalyst (FCC), particle A and glass beads) of diameter range 57-872 μm, apparent density 1470-3092 kg/m3, and bulk density range 890-1773 kg/m3 were investigated in a gas-solid circulating fluidized bed of 0.1 m-i.d. and 2.56 m-height of plexi-glass. Effects of variables (gas velocity, particle properties, and static bed height) were analyzed on bed voidage. The axial voidage profile showed a typical trend along the riser: a dense bed at the lower part followed by a transition in the splash zone and a lean phase in the freeboard. Bed expansion and dense bed voidage increased with an increase of gas velocity as usual. From experimental results, a generalized model relationship based on inverse fluidization number for dense bed voidage from bubbling to fast fluidization regimes was presented.

A Model-Driven Approach of User Interface for MVP Rich Internet Application

This paper presents an approach for the model-driven generating of Rich Internet Application (RIA) focusing on the graphical aspect. We used well known Model-Driven Engineering (MDE) frameworks and technologies, such as Eclipse Modeling Framework (EMF), Graphical Modeling Framework (GMF), Query View Transformation (QVTo) and Acceleo to enable the design and the code automatic generation of the RIA. During the development of the approach, we focused on the graphical aspect of the application in terms of interfaces while opting for the Model View Presenter pattern that is designed for graphics interfaces. The paper describes the process followed to define the approach, the supporting tool and presents the results from a case study.

The Law of Treaties and National Security of Islamic Republic of Iran

The concept of national security in Iran is a permanently effective factor in acceptance or rejection of many international obligations. These obligations had been defined according to the type of legislation of Iran in many aspects. Therefore, there are several treaties at international level which requires Iran’s security to come in contact with obligations in these treaties in a way that an obstacle to join to them and their passage in parliament. This issue is a typical category which every country pays attention to be accepted in treaties or to include their national security in that treaties and also they can see the related treaties from this perspective, but this issue that 'what is the concept of Iran’s national security', and 'To what extent it is changed in recent years, especially after Islamic Revolution' are important issues that can be criticized. Thus, this study is trying to assess singed treaties from the perspective of Iran’s national security according of the true meaning of treaty and to investigate how the international treaties may be in conflict with Iran’s national security.

Physical and Microbiological Evaluation of Chitosan Films: Effect of Essential Oils and Storage

The effect of the inclusion of thyme and rosemary essential oils into chitosan films, as well as the microbiological and physical properties when storing chitosan film with and without the mentioned inclusion was studied. The film forming solution was prepared by dissolving chitosan (2%, w/v), polysorbate 80 (4% w/w CH) and glycerol (16% w/w CH) in aqueous lactic acid solutions (control). The thyme (TEO) and rosemary (REO) essential oils (EOs) were included 1:1 w/w (EOs:CH) on their combination 50/50 (TEO:REO). The films were stored at temperatures of 5, 20, 33°C and a relative humidity of 75% during four weeks. The films with essential oil inclusion did not show an antimicrobial activity against strains. This behavior could be explained because the chitosan only inhibits the growth of microorganisms in direct contact with the active sites. However, the inhibition capacity of TEO was higher than the REO and a synergic effect between TEO:REO was found for S. enteritidis strains in the chitosan solution. Some physical properties were modified by the inclusion of essential oils. The addition of essential oils does not affect the mechanical properties (tensile strength, elongation at break, puncture deformation), the water solubility, the swelling index nor the DSC behavior. However, the essential oil inclusion can significantly decrease the thickness, the moisture content, and the L* value of films whereas the b* value increased due to molecular interactions between the polymeric matrix, the loosing of the structure, and the chemical modifications. On the other hand, the temperature and time of storage changed some physical properties on the chitosan films. This could have occurred because of chemical changes, such as swelling in the presence of high humidity air and the reacetylation of amino groups. In the majority of cases, properties such as moisture content, tensile strength, elongation at break, puncture deformation, a*, b*, chrome, 7E increased whereas water resistance, swelling index, L*, and hue angle decreased.

Vibration Analysis of Functionally Graded Engesser- Timoshenko Beams Subjected to Axial Load Located on a Continuous Elastic Foundation

This paper studies free vibration of functionally graded beams Subjected to Axial Load that is simply supported at both ends lies on a continuous elastic foundation. The displacement field of beam is assumed based on Engesser-Timoshenko beam theory. The Young's modulus of beam is assumed to be graded continuously across the beam thickness. Applying the Hamilton's principle, the governing equation is established. Resulting equation is solved using the Euler's Equation. The effects of the constituent volume fractions and foundation coefficient on the vibration frequency are presented. To investigate the accuracy of the present analysis, a compression study is carried out with a known data.

Oxide Based Resistive Random Access Memory Device for High Density Non Volatile Memory Applications

In this work, we demonstrated vertical RRAM device fabricated at the sidewall of contact hole structures for possible future 3-D stacking integrations. The fabricated devices exhibit polarity dependent bipolar resistive switching with small operation voltage of less than 1V for both set and reset process. A good retention of memory window ~50 times is maintained after 1000s voltage bias.

Switching Behaviors of HfO2/NiSix Based RRAM

This paper presents a study of Ni-silicides as the bottom electrode of HfO2-based RRAM. Various silicidation conditions were used to obtain different Ni concentrations within the Ni-silicide bottom electrode, namely Ni2Si, NiSi, and NiSi2. A 10nm HfO2 switching material and 50nm TiN top electrode was then deposited and etched into 500nm by 500nm square RRAM cells. Cell performance of the Ni2Si and NiSi cells were good, while the NiSi2 cell could not switch reliably, indicating that the presence of Ni in the bottom electrode is important for good switching.

Boria: A Conventional Theatre in Malaysia

This study this is considering Boria as a conventional performance in Malaysia. Boria is a folk performance unique to Penang. This theatre style reached Penang in the mid-19th century and is believed to be derived from the Shia Islamic Passion play performed during the Muslim month of Muharram to commemorate the martyrs of Kerbela. These days in Malaysia (especially Penang) Boria mentions to a choral street performance performed annually by a number of groups composed mostly of Sunni Malaysian. Boria are performed for entertainment and often include an annual singing competition. The size, membership, themes and movements of each Boria troupe may vary from year to year. Similarly, the themes and contents of the Boria performed by the different troupes also changes each year and can have a comical, political or satirical notion. It is common to most groups during the first ten days of Muharram Boria generally is done.

ALD HfO2 Based RRAM with Ti Capping

HfOx based Resistive Random Access Memory (RRAM) is one of the most widely studied material stack due to its promising performances as an emerging memory technology. In this work, we systematically investigated the effect of metal capping layer by preparing sample devices with varying thickness of Ti cap and comparing their operating parameters with the help of an Agilent-B1500A analyzer.

Switching Behaviors of TiN/HfOx/Pt Based RRAM

Resistive Random Access Memory (RRAM) had received great amount of attention from various research efforts in recent years, owing to its promising performance as a next generation memory device. In this paper, samples based on TiN/HfOx/Pt stack were prepared and its electrical switching behaviors were characterized and discussed in brief.

Mechanical Buckling of Functionally Graded Engesser-Timoshenko Beams Located on a Continuous Elastic Foundation

This paper studies mechanical buckling of functionally graded beams subjected to axial compressive load that is simply supported at both ends lies on a continuous elastic foundation. The displacement field of beam is assumed based on Engesser-Timoshenko beam theory. Applying the Hamilton's principle, the equilibrium equation is established. The influences of dimensionless geometrical parameter, functionally graded index and foundation coefficient on the critical buckling load of beam are presented. To investigate the accuracy of the present analysis, a compression study is carried out with a known data.

The Buffer Gas Influence Rate on Absolute Cu Atoms Density with regard to Deposition

The absolute Cu atoms density in Cu(2S1/2ÔåÉ2P1/2) ground state has been measured by Resonance Optical Absorption (ROA) technique in a DC magnetron sputtering deposition with argon. We measured these densities under variety of operation conditions: pressure from 0.6 μbar to 14 μbar, input power from 10W to 200W and N2 mixture from 0% to 100%. For measuring the gas temperature, we used the simulation of N2 rotational spectra with a special computer code. The absolute number density of Cu atoms decreases with increasing the N2 percentage of buffer gas at any conditions of this work. But the deposition rate, is not decreased with the same manner. The deposition rate variation is very small and in the limit of quartz balance measuring equipment accuracy. So we conclude that decrease in the absolute number density of Cu atoms in magnetron plasma has not a big effect on deposition rate, because the diffusion of Cu atoms to the chamber volume and deviation of Cu atoms from direct path (towards the substrate) decreases with increasing of N2 percentage of buffer gas. This is because of the lower mass of N2 atoms compared to the argon ones.

Integration of Resistive Switching Memory Cell with Vertical Nanowire Transistor

We integrate TiN/Ni/HfO2/Si RRAM cell with a vertical gate-all-around (GAA) nanowire transistor to achieve compact 4F2 footprint in a 1T1R configuration. The tip of the Si nanowire (source of the transistor) serves as bottom electrode of the memory cell. Fabricated devices with nanowire diameter ~ 50nm demonstrate ultra-low current/power switching; unipolar switching with 10μA/30μW SET and 20μA/30μW RESET and bipolar switching with 20nA/85nW SET and 0.2nA/0.7nW RESET. Further, the switching current is found to scale with nanowire diameter making the architecture promising for future scaling.

On Stability of Stiffened Cylindrical Shells with Varying Material Properties

The static stability analysis of stiffened functionally graded cylindrical shells by isotropic rings and stringers subjected to axial compression is presented in this paper. The Young's modulus of the shell is taken to be function of the thickness coordinate. The fundamental relations, the equilibrium and stability equations are derived using the Sander's assumption. Resulting equations are employed to obtain the closed-form solution for the critical axial loads. The effects of material properties, geometric size and different material coefficient on the critical axial loads are examined. The analytical results are compared and validated using the finite element model.

Cosastudio: A Software Architecture Modeling Tool

A key aspect of the design of any software system is its architecture. An architecture description provides a formal model of the architecture in terms of components and connectors and how they are composed together. COSA (Component-Object based Software Structures), is based on object-oriented modeling and component-based modeling. The model improves the reusability by increasing extensibility, evolvability, and compositionality of the software systems. This paper presents the COSA modelling tool which help architects the possibility to verify the structural coherence of a given system and to validate its semantics with COSA approach.