Pathogen Removal Under the Influence of Iron

Drinking water is one of the most valuable resources available to mankind. The presence of pathogens in drinking water is highly undesirable. Because of the Lateritic soil, the iron concentrations were high in ground water. High concentration of iron and other trace elements could restrict bacterial growth and modify their metabolic pattern as well. The bacterial growth rate reduced in the presence of iron in water. This paper presents the results of a controlled laboratory study conducted to assess the inhibition of micro-organism (pathogen) in well waters in the presence of dissolved iron concentrations. Synthetic samples were studied in the laboratory and the results compared with field samples. Predictive model for microbial inhibition in the presence of iron is presented. It was seen that the bore wells, open wells and the field results varied, probably due to the nature of micro-organism utilizing the iron in well waters.

Simulation and 40 Years of Object-Oriented Programming

2007 is a jubilee year: in 1967, programming language SIMULA 67 was presented, which contained all aspects of what was later called object-oriented programming. The present paper contains a description of the development unto the objectoriented programming, the role of simulation in this development and other tools that appeared in SIMULA 67 and that are nowadays called super-object-oriented programming.

A Proposed Information Extraction Technique in Engineering Drawing for Reuse Design

The extensive number of engineering drawing will be referred for planning process and the changes will produce a good engineering design to meet the demand in producing a new model. The advantage in reuse of engineering designs is to allow continuous product development to further improve the quality of product development, thus reduce the development costs. However, to retrieve the existing engineering drawing, it is time consuming, a complex process and are expose to errors. Engineering drawing file searching system will be proposed to solve this problem. It is essential for engineer and designer to have some sort of medium to enable them to search for drawing in the most effective way. This paper lays out the proposed research project under the area of information extraction in engineering drawing.

Heat and Mass Transfer in a Solar Dryer with Biomass Backup Burner

Majority of pepper farmers in Malaysia are using the open-sun method for drying the pepper berries. This method is time consuming and exposed the berries to rain and contamination. A maintenance-friendly and properly enclosed dryer is therefore desired. A dryer design with a solar collector and a chimney was studied and adapted to suit the needs of small-scale pepper farmers in Malaysia. The dryer will provide an environment with an optimum operating temperature meant for drying pepper berries. The dryer model was evaluated by using commercially available computational fluid dynamic (CFD) software in order to understand the heat and mass transfer inside the dryer. Natural convection was the only mode of heat transportation considered in this study as in accordance to the idea of having a simple and maintenance-friendly design. To accommodate the effect of low buoyancy found in natural convection driers, a biomass burner was integrated into the solar dryer design.

Evaluation on Bearing Capacity of Ring Foundations on two-Layered Soil

This paper utilizes a finite element analysis to study the bearing capacity of ring footings on a two-layered soil. The upper layer, that the footing is placed on it, is soft clay and the underneath layer is a cohesionless sand. For modeling soils, Mohr–Coulomb plastic yield criterion is employed. The effects of two factors, the clay layer thickness and the ratio of internal radius of the ring footing to external radius of the ring, have been analyzed. It is found that the bearing capacity decreases as the value of ri / ro increases. Although, as the clay layer thickness increases the bearing capacity was alleviated gradually.

Design of the Miniature Maglev Using Hybrid Magnets in Magnetic Levitation System

Attracting ferromagnetic forces between magnet and reaction rail provide the supporting force in Electromagnetic Suspension. Miniature maglev using permanent magnets and electromagnets is based on the idea to generate the nominal magnetic force by permanent magnets and superimpose the variable magnetic field required for stabilization by currents flowing through control windings in electromagnets. Permanent magnets with a high energy density have lower power losses with regard to supporting force and magnet weight. So the advantage of the maglev using electromagnets and permanent magnets is partially reduced by the power required to feed the remaining onboard supply system so that the overall onboard power is diminished as compared to that of the electromagnet. In this paper we proposed the how to design and control the miniature maglev and confirmed the feasibility of the levitation system using electromagnets and permanent magnets through the manufacturing the miniature maglev

A Model of Market Segmentation for the Customers of Mellat Bank in Iran

If organizations like Mellat Bank want to identify its customer market completely to reach its specified goals, it can segment the market to offer the product package to the right segment. Our objective is to offer a segmentation model for Iran banking market in Mellat bank view. The methodology of this project is combined by “segmentation on the basis of four part-quality variables" and “segmentation on the basis of different in means". Required data are gathered from E-Systems and researcher personal observation. Finally, the research offers the organization that at first step form a four dimensional matrix with 756 segments using four variables named value-based, behavioral, activity style, and activity level, and at the second step calculate the means of profit for every cell of matrix in two distinguished work level (levels α1:normal condition and α2: high pressure condition) and compare the segments by checking two conditions that are 1- homogeneity every segment with its sub segment and 2- heterogeneity with other segments, and so it can do the necessary segmentation process. After all, the last offer (more explained by an operational example and feedback algorithm) is to test and update the model because of dynamic environment, technology, and banking system.

Data Mining Classification Methods Applied in Drug Design

Data mining incorporates a group of statistical methods used to analyze a set of information, or a data set. It operates with models and algorithms, which are powerful tools with the great potential. They can help people to understand the patterns in certain chunk of information so it is obvious that the data mining tools have a wide area of applications. For example in the theoretical chemistry data mining tools can be used to predict moleculeproperties or improve computer-assisted drug design. Classification analysis is one of the major data mining methodologies. The aim of thecontribution is to create a classification model, which would be able to deal with a huge data set with high accuracy. For this purpose logistic regression, Bayesian logistic regression and random forest models were built using R software. TheBayesian logistic regression in Latent GOLD software was created as well. These classification methods belong to supervised learning methods. It was necessary to reduce data matrix dimension before construct models and thus the factor analysis (FA) was used. Those models were applied to predict the biological activity of molecules, potential new drug candidates.

Removal of Arsenic (III) from Contaminated Waterby Synthetic Nano Size Zerovalent Iron

The present work was conducted for Arsenic (III) removal, which one of the most poisonous groundwater pollutants, by synthetic nano size zerovalent iron (nZVI). Batch experiments were performed to investigate the influence of As (III), nZVI concentration, pH of solution and contact time on the efficiency of As (III) removal. nZVI was synthesized by reduction of ferric chloride by sodium borohydrid. SEM and XRD were used to determine particle size and characterization of produced nanoparticles. Up to 99.9% removal efficiency for arsenic (III) was obtained by nZVI dosage of 1 g/L at time equal to 10 min. and pH=7. It could be concluded that the removal efficiency were enhanced with increasing of ZVI dosage and reaction time, but decreased with increasing of arsenic concentration and pH for nano sized ZVI. nZVI presented an outstanding ability to remove As (III) due to not only a high surface area and low particle size but also to high inherent activity.

A New Self-Adaptive EP Approach for ANN Weights Training

Evolutionary Programming (EP) represents a methodology of Evolutionary Algorithms (EA) in which mutation is considered as a main reproduction operator. This paper presents a novel EP approach for Artificial Neural Networks (ANN) learning. The proposed strategy consists of two components: the self-adaptive, which contains phenotype information and the dynamic, which is described by genotype. Self-adaptation is achieved by the addition of a value, called the network weight, which depends on a total number of hidden layers and an average number of neurons in hidden layers. The dynamic component changes its value depending on the fitness of a chromosome, exposed to mutation. Thus, the mutation step size is controlled by two components, encapsulated in the algorithm, which adjust it according to the characteristics of a predefined ANN architecture and the fitness of a particular chromosome. The comparative analysis of the proposed approach and the classical EP (Gaussian mutation) showed, that that the significant acceleration of the evolution process is achieved by using both phenotype and genotype information in the mutation strategy.

High Quality Speech Coding using Combined Parametric and Perceptual Modules

A novel approach to speech coding using the hybrid architecture is presented. Advantages of parametric and perceptual coding methods are utilized together in order to create a speech coding algorithm assuring better signal quality than in traditional CELP parametric codec. Two approaches are discussed. One is based on selection of voiced signal components that are encoded using parametric algorithm, unvoiced components that are encoded perceptually and transients that remain unencoded. The second approach uses perceptual encoding of the residual signal in CELP codec. The algorithm applied for precise transient selection is described. Signal quality achieved using the proposed hybrid codec is compared to quality of some standard speech codecs.

Modeling and Control of Two Manipulators Handling a Flexible Beam

This paper seeks to develop simple yet practical and efficient control scheme that enables cooperating arms to handle a flexible beam. Specifically the problem studied herein is that of two arms rigidly grasping a flexible beam and such capable of generating forces/moments in such away as to move a flexible beam along a predefined trajectory. The paper develops a sliding mode control law that provides robustness against model imperfection and uncertainty. It also provides an implicit stability proof. Simulation results for two three joint arms moving a flexible beam, are presented to validate the theoretical results.

Detecting Subsurface Circular Objects from Low Contrast Noisy Images: Applications in Microscope Image Enhancement

Particle detection in very noisy and low contrast images is an active field of research in image processing. In this article, a method is proposed for the efficient detection and sizing of subsurface spherical particles, which is used for the processing of softly fused Au nanoparticles. Transmission Electron Microscopy is used for imaging the nanoparticles, and the proposed algorithm has been tested with the two-dimensional projected TEM images obtained. Results are compared with the data obtained by transmission optical spectroscopy, as well as with conventional circular object detection algorithms.

Potential of Exopolysaccharides in Yoghurt Production

Consumer demand for products with low fat or sugar content and low levels of food additives, as well as cost factors, make exopolysaccharides (EPS) a viable alternative. EPS remain an interesting tool to modulate the sensory properties of yoghurt. This study was designed to evaluate EPS production potential of commercial yoghurt starter cultures (Yo-Flex starters: Harmony 1.0, TWIST 1.0 and YF-L902, Chr.Hansen, Denmark) and their influence on an apparent viscosity of yoghurt samples. The production of intracellularly synthesized EPS by different commercial yoghurt starters varies roughly from 144,08 to 440,81 mg/l. Analysing starters’ producing EPS, they showed large variations in concentration and supposedly composition. TWIST 1.0 had produced greater amounts of EPS in MRS medium and in yoghurt samples but there wasn’t determined significant contribution to development of texture as well as an apparent viscosity of the final product. YF-L902 and Harmony 1.0 starters differed considerably in EPS yields, but not in apparent viscosities (p>0.05) of the final yoghurts. Correlation between EPS concentration and viscosity of yoghurt samples was not established in the study.

Orchestra/Percussion Classification Algorithm for United Speech Audio Coding System

Unified Speech Audio Coding (USAC), the latest MPEG standardization for unified speech and audio coding, uses a speech/audio classification algorithm to distinguish speech and audio segments of the input signal. The quality of the recovered audio can be increased by well-designed orchestra/percussion classification and subsequent processing. However, owing to the shortcoming of the system, introducing an orchestra/percussion classification and modifying subsequent processing can enormously increase the quality of the recovered audio. This paper proposes an orchestra/percussion classification algorithm for the USAC system which only extracts 3 scales of Mel-Frequency Cepstral Coefficients (MFCCs) rather than traditional 13 scales of MFCCs and use Iterative Dichotomiser 3 (ID3) Decision Tree rather than other complex learning method, thus the proposed algorithm has lower computing complexity than most existing algorithms. Considering that frequent changing of attributes may lead to quality loss of the recovered audio signal, this paper also design a modified subsequent process to help the whole classification system reach an accurate rate as high as 97% which is comparable to classical 99%.

A Novel Genetic Algorithm Designed for Hardware Implementation

A new genetic algorithm, termed the 'optimum individual monogenetic genetic algorithm' (OIMGA), is presented whose properties have been deliberately designed to be well suited to hardware implementation. Specific design criteria were to ensure fast access to the individuals in the population, to keep the required silicon area for hardware implementation to a minimum and to incorporate flexibility in the structure for the targeting of a range of applications. The first two criteria are met by retaining only the current optimum individual, thereby guaranteeing a small memory requirement that can easily be stored in fast on-chip memory. Also, OIMGA can be easily reconfigured to allow the investigation of problems that normally warrant either large GA populations or individuals many genes in length. Local convergence is achieved in OIMGA by retaining elite individuals, while population diversity is ensured by continually searching for the best individuals in fresh regions of the search space. The results given in this paper demonstrate that both the performance of OIMGA and its convergence time are superior to those of a range of existing hardware GA implementations.

Mathematical Analysis of EEG of Patients with Non-fatal Nonspecific Diffuse Encephalitis

Diffuse viral encephalitis may lack fever and other cardinal signs of infection and hence its distinction from other acute encephalopathic illnesses is challenging. Often, the EEG changes seen routinely are nonspecific and reflect diffuse encephalopathic changes only. The aim of this study was to use nonlinear dynamic mathematical techniques for analyzing the EEG data in order to look for any characteristic diagnostic patterns in diffuse forms of encephalitis.It was diagnosed on clinical, imaging and cerebrospinal fluid criteria in three young male patients. Metabolic and toxic encephalopathies were ruled out through appropriate investigations. Digital EEGs were done on the 3rd to 5th day of onset. The digital EEGs of 5 male and 5 female age and sex matched healthy volunteers served as controls.Two sample t-test indicated that there was no statistically significant difference between the average values in amplitude between the two groups. However, the standard deviation (or variance) of the EEG signals at FP1-F7 and FP2-F8 are significantly higher for the patients than the normal subjects. The regularisation dimension is significantly less for the patients (average between 1.24-1.43) when compared to the normal persons (average between 1.41-1.63) for the EEG signals from all locations except for the Fz-Cz signal. Similarly the wavelet dimension is significantly less (P = 0.05*) for the patients (1.122) when compared to the normal person (1.458). EEGs are subdued in the case of the patients with presence of uniform patterns, manifested in the values of regularisation and wavelet dimensions, when compared to the normal person, indicating a decrease in chaotic nature.

Denoising by Spatial Domain Averaging for Wireless Local Area Network Terminal Localization

Terminal localization for indoor Wireless Local Area Networks (WLANs) is critical for the deployment of location-aware computing inside of buildings. A major challenge is obtaining high localization accuracy in presence of fluctuations of the received signal strength (RSS) measurements caused by multipath fading. This paper focuses on reducing the effect of the distance-varying noise by spatial filtering of the measured RSS. Two different survey point geometries are tested with the noise reduction technique: survey points arranged in sets of clusters and survey points uniformly distributed over the network area. The results show that the location accuracy improves by 16% when the filter is used and by 18% when the filter is applied to a clustered survey set as opposed to a straight-line survey set. The estimated locations are within 2 m of the true location, which indicates that clustering the survey points provides better localization accuracy due to superior noise removal.

Prototype for Enhancing Information Security Awareness in Industry

Human-related information security breaches within organizations are primarily caused by employees who have not been made aware of the importance of protecting the information they work with. Information security awareness is accordingly attracting more attention from industry, because stakeholders are held accountable for the information with which they work. The authors developed an Information Security Retrieval and Awareness model – entitled “ISRA" – that is tailored specifically towards enhancing information security awareness in industry amongst all users of information, to address shortcomings in existing information security awareness models. This paper is principally aimed at expounding a prototype for the ISRA model to highlight the advantages of utilizing the model. The prototype will focus on the non-technical, humanrelated information security issues in industry. The prototype will ensure that all stakeholders in an organization are part of an information security awareness process, and that these stakeholders are able to retrieve specific information related to information security issues relevant to their job category, preventing them from being overburdened with redundant information.

Low Power Bus Binding Based on Dynamic Bit Reordering

In this paper, the problem of reducing switching activity in on-chip buses at the stage of high-level synthesis is considered, and a high-level low power bus binding based on dynamic bit reordering is proposed. Whereas conventional methods use a fixed bit ordering between variables within a bus, the proposed method switches a bit ordering dynamically to obtain a switching activity reduction. As a result, the proposed method finds a binding solution with a smaller value of total switching activity (TSA). Experimental result shows that the proposed method obtains a binding solution having 12.0-34.9% smaller TSA compared with the conventional methods.