GPS INS Integration Application in Flight Management System

Flight management system (FMS) is a specialized computer system that automates a wide variety of in-flight tasks, reducing the workload on the flight crew to the point that modern aircraft no longer carry flight engineers or navigators. The primary function of FMS is to perform the in-flight management of the flight plan using various sensors (such as GPS and INS often backed up by radio navigation) to determine the aircraft's position. From the cockpit FMS is normally controlled through a Control Display Unit (CDU) which incorporates a small screen and keyboard or touch screen. This paper investigates the performance of GPS/ INS integration techniques in which the data fusion process is done using Kalman filtering. This will include the importance of sensors calibration as well as the alignment of the strap down inertial navigation system. The limitations of the inertial navigation systems are investigated in order to understand why INS sometimes is integrated with other navigation aids and not just operating in standalone mode. Finally, both the loosely coupled and tightly coupled configurations are analyzed for several types of situations and operational conditions.

Denoising by Spatial Domain Averaging for Wireless Local Area Network Terminal Localization

Terminal localization for indoor Wireless Local Area Networks (WLANs) is critical for the deployment of location-aware computing inside of buildings. A major challenge is obtaining high localization accuracy in presence of fluctuations of the received signal strength (RSS) measurements caused by multipath fading. This paper focuses on reducing the effect of the distance-varying noise by spatial filtering of the measured RSS. Two different survey point geometries are tested with the noise reduction technique: survey points arranged in sets of clusters and survey points uniformly distributed over the network area. The results show that the location accuracy improves by 16% when the filter is used and by 18% when the filter is applied to a clustered survey set as opposed to a straight-line survey set. The estimated locations are within 2 m of the true location, which indicates that clustering the survey points provides better localization accuracy due to superior noise removal.