Research on Transformer Condition-based Maintenance System using the Method of Fuzzy Comprehensive Evaluation

This study adopted previous fault patterns, results of detection analysis, historical records and data, and experts- experiences to establish fuzzy principles and estimate the failure probability index of components of a power transformer. Considering that actual parameters and limiting conditions of parameters may differ, this study used the standard data of IEC, IEEE, and CIGRE as condition parameters. According to the characteristics of each condition parameter, relative degradation was introduced to reflect the degree of influence of the factors on the transformer condition. The method of fuzzy mathematics was adopted to determine the subordinate function of the transformer condition. The calculation used the Matlab Fuzzy Tool Box to select the condition parameters of coil winding, iron core, bushing, OLTC, insulating oil and other auxiliary components and factors (e.g., load records, performance history, and maintenance records) of the transformer to establish the fuzzy principles. Examples were presented to support the rationality and effectiveness of the evaluation method of power transformer performance conditions, as based on fuzzy comprehensive evaluation.

In-Situ Monitoring the Thermal Forming of Glass and Si Foils for Space X-Ray Telescopes

We developed a non-contact method for the in-situ monitoring of the thermal forming of glass and Si foils to optimize the manufacture of mirrors for high-resolution space x-ray telescopes. Their construction requires precise and light-weight segmented optics with angular resolution better than 5 arcsec. We used 75x25 mm Desag D263 glass foils 0.75 mm thick and 0.6 mm thick Si foils. The glass foils were shaped by free slumping on a frame at viscosities in the range of 109.3-1012 dPa·s, the Si foils by forced slumping above 1000°C. Using a Nikon D80 digital camera, we took snapshots of a foil-s shape every 5 min during its isothermal heat treatment. The obtained results we can use for computer simulations. By comparing the measured and simulated data, we can more precisely define material properties of the foils and optimize the forming technology.

Piezoelectric Polarization Effect on Debye Frequency and Temperature in Nitride Wurtzites

We have investigated the effect of piezoelectric (PZ) polarization property in binary as well as in ternary wurtzite nitrides. It is found that with the presence of PZ polarization property, the phonon group velocity is modified. The change in phonon group velocity due to PZ polarization effect directly depends on piezoelectric tensor value. Using different piezoelectric tensor values recommended by different workers in the literature, percent change in group velocities of phonons has been estimated. The Debye temperatures and frequencies of binary nitrides GaN, AlN and InN are also calculated using the modified group velocities. For ternary nitrides AlxGa(1-x)N, InxGa(1-x)N and InxAl(1-x)N, the phonon group velocities have been calculated as a functions of composition. A small positive bowing is observed in phonon group velocities of ternary alloys. Percent variations in phonon group velocities are also calculated for a straightforward comparison among ternary nitrides. The results are expected to show a change in phonon relaxation rates and thermal conductivity of III-nitrides when piezoelectric polarization property is taken into consideration.

Alternative Approach in Ground Vehicle Wake Analysis

In this paper an alternative visualisation approach of the wake behind different vehicle body shapes with simplified and fully-detailed underbody has been proposed and analysed. This allows for a more clear distinction among the different wake regions. This visualisation is based on a transformation of the cartesian coordinates of a chosen wake plane to polar coordinates, using as filter velocities lower than the freestream. This transformation produces a polar wake plot that enables the division and quantification of the wake in a number of sections. In this paper, local drag has been used to visualise the drag contribution of the flow by the different sections. Visually, a balanced wake can be observed by the concentric behaviour of the polar plots. Alternatively, integration of the local drag of each degree section as a ratio of the total local drag yields a quantifiable approach of the wake uniformity, where different sections contribute equally to the local drag, with the exception of the wheels.

Memory Estimation of Internet Server Using Queuing Theory: Comparative Study between M/G/1, G/M/1 and G/G/1 Queuing Model

How to effectively allocate system resource to process the Client request by Gateway servers is a challenging problem. In this paper, we propose an improved scheme for autonomous performance of Gateway servers under highly dynamic traffic loads. We devise a methodology to calculate Queue Length and Waiting Time utilizing Gateway Server information to reduce response time variance in presence of bursty traffic. The most widespread contemplation is performance, because Gateway Servers must offer cost-effective and high-availability services in the elongated period, thus they have to be scaled to meet the expected load. Performance measurements can be the base for performance modeling and prediction. With the help of performance models, the performance metrics (like buffer estimation, waiting time) can be determined at the development process. This paper describes the possible queue models those can be applied in the estimation of queue length to estimate the final value of the memory size. Both simulation and experimental studies using synthesized workloads and analysis of real-world Gateway Servers demonstrate the effectiveness of the proposed system.

DEA ANN Approach in Supplier Evaluation System

In Supply Chain Management (SCM), strengthening partnerships with suppliers is a significant factor for enhancing competitiveness. Hence, firms increasingly emphasize supplier evaluation processes. Supplier evaluation systems are basically developed in terms of criteria such as quality, cost, delivery, and flexibility. Because there are many variables to be analyzed, this process becomes hard to execute and needs expertise. On this account, this study aims to develop an expert system on supplier evaluation process by designing Artificial Neural Network (ANN) that is supported with Data Envelopment Analysis (DEA). The methods are applied on the data of 24 suppliers, which have longterm relationships with a medium sized company from German Iron and Steel Industry. The data of suppliers consists of variables such as material quality (MQ), discount of amount (DOA), discount of cash (DOC), payment term (PT), delivery time (DT) and annual revenue (AR). Meanwhile, the efficiency that is generated by using DEA is added to the supplier evaluation system in order to use them as system outputs.

Performance Analysis of Learning Automata-Based Routing Algorithms in Sparse Graphs

A number of routing algorithms based on learning automata technique have been proposed for communication networks. How ever, there has been little work on the effects of variation of graph scarcity on the performance of these algorithms. In this paper, a comprehensive study is launched to investigate the performance of LASPA, the first learning automata based solution to the dynamic shortest path routing, across different graph structures with varying scarcities. The sensitivity of three main performance parameters of the algorithm, being average number of processed nodes, scanned edges and average time per update, to variation in graph scarcity is reported. Simulation results indicate that the LASPA algorithm can adapt well to the scarcity variation in graph structure and gives much better outputs than the existing dynamic and fixed algorithms in terms of performance criteria.

Exponential Stability and Periodicity of a Class of Cellular Neural Networks with Time-Varying Delays

The problem of exponential stability and periodicity for a class of cellular neural networks (DCNNs) with time-varying delays is investigated. By dividing the network state variables into subgroups according to the characters of the neural networks, some sufficient conditions for exponential stability and periodicity are derived via the methods of variation parameters and inequality techniques. These conditions are represented by some blocks of the interconnection matrices. Compared with some previous methods, the method used in this paper does not resort to any Lyapunov function, and the results derived in this paper improve and generalize some earlier criteria established in the literature cited therein. Two examples are discussed to illustrate the main results.

Effects of Opening Shape and Location on the Structural Strength of R.C. Deep Beams with Openings

This research investigates the effects of the opening shape and location on the structural behavior of reinforced concrete deep beam with openings, while keeping the opening size unchanged. The software ANSYS 12.1 is used to handle the nonlinear finite element analysis. The ultimate strength of reinforced concrete deep beam with opening obtained by ANSYS 12.1 shows fair agreement with the experimental results, with a difference of no more than 20%. The present work concludes that the opening location has much more effect on the structural strength than the opening shape. It was concluded that placing the openings near the upper corners of the deep beam may double the strength, and the use of a rectangular narrow opening, with the long sides in the horizontal direction, can save up to 40% of structural strength of the deep beam.

Calculation of the Forces Acting on the Knee Joint When Rising from Kneeling Positions (Effects of the Leg Alignment and the Arm Assistance on the Knee Joint Forces)

Knee joint forces are available by in vivo measurement using an instrumented knee prosthesis for small to moderate knee flexion but not for high flexion yet. We created a 2D mathematical model of the lower limb incorporating several new features such as a patello-femoral mechanism, a thigh-calf contact at high knee flexion and co-contracting muscles' force ratio, then used it to determine knee joint forces arising from high knee flexions in four kneeling conditions: rising with legs in parallel, with one foot forward, with or without arm use. With arms used, the maximum values of knee joint force decreased to about 60% of those with arms not used. When rising with one foot forward, if arms are not used, the forward leg sustains a force as large as that sustained when rising with legs parallel.

Effect of Heat Input on the Weld Metal Toughness of Chromium-Molybdenum Steel

An attempt has been made to determine the strength and impact properties of Cr-Mo steel weld and base materials by varying the current during manual metal arc welding. Toughness over a temperature range from -32 to 100°C of base, heat affected zone (HAZ) and weld zones at three current settings are made. It is observed that the deterioration in notch toughness at any zone with the temperature decreases. The values of notch toughness for all zones at -32°C are almost same for any current settings. The values of notch toughness at HAZ area are higher than that of weld area due to the coarsening of ferrite grain of HAZ occurs with higher heat input. From microhardness and microstructure result, it can be concluded that large inclusion content in weld deposit is the cause of lower notch toughness value.

Investigation of Water Deficit Stress on Agronomical Traits of Soybean Cultivars in Temperate Climate

In order to investigate water deficit stress on 24 of soybean (Glycine Max. L) cultivars and lines in temperate climate, an experiment was conducted in Iran Seed and Plant Improvement Institute. Stress levels were irrigation after evaporation of 50, 100, 150 mm water from pan, class A. Randomized Completely Block Design was arranged for each stress levels. Some traits such as, node number, plant height, pod number per area, grain number per pod, grain number per area, 1000 grains weight, grain yield and harvest index were measured. Results showed that water deficit stress had significant effect on node number, plant height, pod number per area, grain number per pod, grain number per area, 1000 grains weight and harvest index. Also all of agronomic traits except harvest index influenced significantly by cultivars and lines. The least and most grain yield was belonged to Ronak X Williams and M41 x Clark respectively.

Analyzing the Relation of Community Group for Research Paper Bookmarking by Using Association Rule

Currently searching through internet is very popular especially in a field of academic. A huge of educational information such as research papers are overload for user. So community-base web sites have been developed to help user search information more easily from process of customizing a web site to need each specifies user or set of user. In this paper propose to use association rule analyze the community group on research paper bookmarking. A set of design goals for community group frameworks is developed and discussed. Additionally Researcher analyzes the initial relation by using association rule discovery between the antecedent and the consequent of a rule in the groups of user for generate the idea to improve ranking search result and development recommender system.

High Speed and Ultra Low-voltage CMOS NAND and NOR Domino Gates

In this paper we ultra low-voltage and high speed CMOS domino logic. For supply voltages below 500mV the delay for a ultra low-voltage NAND2 gate is aproximately 10% of a complementary CMOS inverter. Furthermore, the delay variations due to mismatch is much less than for conventional CMOS. Differential domino gates for AND/NAND and OR/NOR operation are presented.

An Energy-Efficient Protocol with Static Clustering for Wireless Sensor Networks

A wireless sensor network with a large number of tiny sensor nodes can be used as an effective tool for gathering data in various situations. One of the major issues in wireless sensor networks is developing an energy-efficient routing protocol which has a significant impact on the overall lifetime of the sensor network. In this paper, we propose a novel hierarchical with static clustering routing protocol called Energy-Efficient Protocol with Static Clustering (EEPSC). EEPSC, partitions the network into static clusters, eliminates the overhead of dynamic clustering and utilizes temporary-cluster-heads to distribute the energy load among high-power sensor nodes; thus extends network lifetime. We have conducted simulation-based evaluations to compare the performance of EEPSC against Low-Energy Adaptive Clustering Hierarchy (LEACH). Our experiment results show that EEPSC outperforms LEACH in terms of network lifetime and power consumption minimization.

Characterization of Atmospheric Particulate Matter using PIXE Technique

Coarse and fine particulate matter were collected at a residential area at Vashi, Navi Mumbai and the filter samples were analysed for trace elements using PIXE technique. The trend of particulate matter showed higher concentrations during winter than the summer and monsoon concentration levels. High concentrations of elements related to soil and sea salt were found in PM10 and PM2.5. Also high levels of zinc and sulphur found in the particulates of both the size fractions. EF analysis showed enrichment of Cu, Cr and Mn only in the fine fraction suggesting their origin from anthropogenic sources. The EF value was observed to be maximum for As, Pb and Zn in the fine particulates. However, crustal derived elements showed very low EF values indicating their origin from soil. The PCA based multivariate studies identified soil, sea salt, combustion and Se sources as common sources for coarse and additionally an industrial source has also been identified for fine particles.

Analysis and Flight Test for Small Inflatable Wing Design

This article discusses stress analysis and the shape characteristics of the inflatable wing, and then introduces the design method of inflatable wing, in order to accurately approximate a standard airfoil. It specifically analyses the aerodynamic characteristics of the inflatable wing with the method of CFD, along with comparing to standard airfoil, afterwards we carries out the manufacture of inflatable wing and the flight test.

On Two Control Approaches for The Output Voltage Regulation of a Boost Converter

This paper deals with the comparison between two proposed control strategies for a DC-DC boost converter. The first control is a classical Sliding Mode Control (SMC) and the second one is a distance based Fuzzy Sliding Mode Control (FSMC). The SMC is an analytical control approach based on the boost mathematical model. However, the FSMC is a non-conventional control approach which does not need the controlled system mathematical model. It needs only the measures of the output voltage to perform the control signal. The obtained simulation results show that the two proposed control methods are robust for the case of load resistance and the input voltage variations. However, the proposed FSMC gives a better step voltage response than the one obtained by the SMC.

Effects of Dopant Concentrations on Radiative Properties of Nanoscale Multilayer with Coherent Formulation for Visible Wavelengths

Semiconductor materials with coatings have a wide range of applications in MEMS and NEMS. This work uses transfermatrix method for calculating the radiative properties. Dopped silicon is used and the coherent formulation is applied. The Drude model for the optical constants of doped silicon is employed. Results showed that for the visible wavelengths, more emittance occurs in greater concentrations and the reflectance decreases as the concentration increases. In these wavelengths, transmittance is negligible. Donars and acceptors act similar in visible wavelengths. The effect of wave interference can be understood by plotting the spectral properties such as reflectance or transmittance of a thin dielectric film versus the film thickness and analyzing the oscillations of properties due to constructive and destructive interferences. But this effect has not been shown at visible wavelengths. At room temperature, the scattering process is dominated by lattice scattering for lightly doped silicon, and the impurity scattering becomes important for heavily doped silicon when the dopant concentration exceeds1018cm-3 .

Fuzzy Risk-Based Life Cycle Assessment for Estimating Environmental Aspects in EMS

Environmental aspects plays a central role in environmental management system (EMS) because it is the basis for the identification of an organization-s environmental targets. The existing methods for the assessment of environmental aspects are grouped into three categories: risk assessment-based (RA-based), LCA-based and criterion-based methods. To combine the benefits of these three categories of research, this study proposes an integrated framework, combining RA-, LCA- and criterion-based methods. The integrated framework incorporates LCA techniques for the identification of the causal linkage for aspect, pathway, receptor and impact, uses fuzzy logic to assess aspects, considers fuzzy conditions, in likelihood assessment, and employs a new multi-criteria decision analysis method - multi-criteria and multi-connection comprehensive assessment (MMCA) - to estimate significant aspects in EMS. The proposed model is verified, using a real case study and the results show that this method successfully prioritizes the environmental aspects.