Modified Fuzzy PID Control for Networked Control Systems with Random Delays

To deal with random delays in Networked Control System (NCS), Modified Fuzzy PID Controller is introduced in this paper to implement real-time control adaptively. Via adjusting the control signal dynamically, the system performance is improved. In this paper, the design process and the ultimate simulation results are represented. Finally, examples and corresponding comparisons prove the significance of this method.

A Novel Approach to Image Compression of Colour Images by Plane Reduction Technique

Several methods have been proposed for color image compression but the reconstructed image had very low signal to noise ratio which made it inefficient. This paper describes a lossy compression technique for color images which overcomes the drawbacks. The technique works on spatial domain where the pixel values of RGB planes of the input color image is mapped onto two dimensional planes. The proposed technique produced better results than JPEG2000, 2DPCA and a comparative study is reported based on the image quality measures such as PSNR and MSE.Experiments on real time images are shown that compare this methodology with previous ones and demonstrate its advantages.

A Propagator Method like Algorithm for Estimation of Multiple Real-Valued Sinusoidal Signal Frequencies

In this paper a novel method for multiple one dimensional real valued sinusoidal signal frequency estimation in the presence of additive Gaussian noise is postulated. A computationally simple frequency estimation method with efficient statistical performance is attractive in many array signal processing applications. The prime focus of this paper is to combine the subspace-based technique and a simple peak search approach. This paper presents a variant of the Propagator Method (PM), where a collaborative approach of SUMWE and Propagator method is applied in order to estimate the multiple real valued sine wave frequencies. A new data model is proposed, which gives the dimension of the signal subspace is equal to the number of frequencies present in the observation. But, the signal subspace dimension is twice the number of frequencies in the conventional MUSIC method for estimating frequencies of real-valued sinusoidal signal. The statistical analysis of the proposed method is studied, and the explicit expression of asymptotic (large-sample) mean-squared-error (MSE) or variance of the estimation error is derived. The performance of the method is demonstrated, and the theoretical analysis is substantiated through numerical examples. The proposed method can achieve sustainable high estimation accuracy and frequency resolution at a lower SNR, which is verified by simulation by comparing with conventional MUSIC, ESPRIT and Propagator Method.

Satellite Beam Handoff Detection Algorithm Based On RCST Mobility Information

Since DVB-RCS has been successively implemented, the mobile communication on the multi-beam satellite communication is attractive attention. And the DVB-RCS standard sets up to support mobility of a RCST. In the case of the spot-beam satellite system, the received signal strength does not differ largely between the center and the boundary of the beam. Thus, the RSS based handoff detection algorithm is not benefit to the satellite system as a terrestrial system. Therefore we propose an Adaptive handoff detection algorithm based on RCST mobility information. Our handoff detection algorithm not only can be used as centralized handoff detection algorithm but also removes uncertainties of handoff due to the variation of RSS. Performances were compared with RSS based handoff algorithm. Simulation results show that the proposed handoff detection algorithm not only achieved better handoff and link degradation rate, but also achieved better forward link spectral efficiency.

Least Square-SVM Detector for Wireless BPSK in Multi-Environmental Noise

Support Vector Machine (SVM) is a statistical learning tool developed to a more complex concept of structural risk minimization (SRM). In this paper, SVM is applied to signal detection in communication systems in the presence of channel noise in various environments in the form of Rayleigh fading, additive white Gaussian background noise (AWGN), and interference noise generalized as additive color Gaussian noise (ACGN). The structure and performance of SVM in terms of the bit error rate (BER) metric is derived and simulated for these advanced stochastic noise models and the computational complexity of the implementation, in terms of average computational time per bit, is also presented. The performance of SVM is then compared to conventional binary signaling optimal model-based detector driven by binary phase shift keying (BPSK) modulation. We show that the SVM performance is superior to that of conventional matched filter-, innovation filter-, and Wiener filter-driven detectors, even in the presence of random Doppler carrier deviation, especially for low SNR (signal-to-noise ratio) ranges. For large SNR, the performance of the SVM was similar to that of the classical detectors. However, the convergence between SVM and maximum likelihood detection occurred at a higher SNR as the noise environment became more hostile.

Single Input ANC for Suppression of Breath Sound

Various sounds generated in the chest are included in auscultation sound. Adaptive Noise Canceller (ANC) is one of the useful techniques for biomedical signal. But the ANC is not suitable for auscultation sound. Because the ANC needs two input channels as a primary signal and a reference signals, but a stethoscope can provide just one input sound. Therefore, in this paper, it was proposed the Single Input ANC (SIANC) for suppression of breath sound in a cardiac auscultation sound. For the SIANC, it was proposed that the reference generation system which included Heart Sound Detector, Control and Reference Generator. By experiment and comparison, it was confirmed that the proposed SIANC was efficient for heart sound enhancement and it was independent of variations of a heartbeat.

Change Detection and Non Stationary Signals Tracking by Adaptive Filtering

In this paper we consider the problem of change detection and non stationary signals tracking. Using parametric estimation of signals based on least square lattice adaptive filters we consider for change detection statistical parametric methods using likelihood ratio and hypothesis tests. In order to track signals dynamics, we introduce a compensation procedure in the adaptive estimation. This will improve the adaptive estimation performances and fasten it-s convergence after changes detection.

Building a Trend Based Segmentation Method with SVR Model for Stock Turning Detection

This research focus on developing a new segmentation method for improving forecasting model which is call trend based segmentation method (TBSM). Generally, the piece-wise linear representation (PLR) can finds some of pair of trading points is well for time series data, but in the complicated stock environment it is not well for stock forecasting because of the stock has more trends of trading. If we consider the trends of trading in stock price for the trading signal which it will improve the precision of forecasting model. Therefore, a TBSM with SVR model used to detect the trading points for various stocks of Taiwanese and America under different trend tendencies. The experimental results show our trading system is more profitable and can be implemented in real time of stock market

Biosignal Measurement System Based On Ultra-Wide Band Human Body Communication

A wrist-band type biosignal measurement system and its data transfer through human body communication (HBC) were investigated. An HBC method based on pulses of ultra-wide band instead of using frequency or amplitude modulations was studied and implemented since the system became very compact and it was more suited for personal or mobile health monitoring. Our system measured photo-plethysmogram (PPG) and measured PPG signals were transmitted through a finger to a monitoring PC system. The device was compact and low-power consuming. HBC communication has very strongsecurity measures since it does not use wireless network.Furthermore, biosignal monitoring system becomes handy because it does not need to have wire connections.

Performance Evaluation of Compression Algorithms for Developing and Testing Industrial Imaging Systems

The development of many measurement and inspection systems of products based on real-time image processing can not be carried out totally in a laboratory due to the size or the temperature of the manufactured products. Those systems must be developed in successive phases. Firstly, the system is installed in the production line with only an operational service to acquire images of the products and other complementary signals. Next, a recording service of the image and signals must be developed and integrated in the system. Only after a large set of images of products is available, the development of the real-time image processing algorithms for measurement or inspection of the products can be accomplished under realistic conditions. Finally, the recording service is turned off or eliminated and the system operates only with the real-time services for the acquisition and processing of the images. This article presents a systematic performance evaluation of the image compression algorithms currently available to implement a real-time recording service. The results allow establishing a trade off between the reduction or compression of the image size and the CPU time required to get that compression level.

Capacitive ECG Measurement by Conductive Fabric Tape

Capacitive electrocardiogram (ECG) measurement is an attractive approach for long-term health monitoring. However, there is little literature available on its implementation, especially for multichannel system in standard ECG leads. This paper begins from the design criteria for capacitive ECG measurement and presents a multichannel limb-lead capacitive ECG system with conductive fabric tapes pasted on a double layer PCB as the capacitive sensors. The proposed prototype system incorporates a capacitive driven-body (CDB) circuit to reduce the common-mode power-line interference (PLI). The presented prototype system has been verified to be stable by theoretic analysis and practical long-term experiments. The signal quality is competitive to that acquired by commercial ECG machines. The feasible size and distance of capacitive sensor have also been evaluated by a series of tests. From the test results, it is suggested to be greater than 60 cm2 in sensor size and be smaller than 1.5 mm in distance for capacitive ECG measurement.

Performance Analysis of MUSIC, Root-MUSIC and ESPRIT DOA Estimation Algorithm

Direction of Arrival estimation refers to defining a mathematical function called a pseudospectrum that gives an indication of the angle a signal is impinging on the antenna array. This estimation is an efficient method of improving the quality of service in a communication system by focusing the reception and transmission only in the estimated direction thereby increasing fidelity with a provision to suppress interferers. This improvement is largely dependent on the performance of the algorithm employed in the estimation. Many DOA algorithms exists amongst which are MUSIC, Root-MUSIC and ESPRIT. In this paper, performance of these three algorithms is analyzed in terms of complexity, accuracy as assessed and characterized by the CRLB and memory requirements in various environments and array sizes. It is found that the three algorithms are high resolution and dependent on the operating environment and the array size. 

Stochastic Resonance in Nonlinear Signal Detection

Stochastic resonance (SR) is a phenomenon whereby the signal transmission or signal processing through certain nonlinear systems can be improved by adding noise. This paper discusses SR in nonlinear signal detection by a simple test statistic, which can be computed from multiple noisy data in a binary decision problem based on a maximum a posteriori probability criterion. The performance of detection is assessed by the probability of detection error Per . When the input signal is subthreshold signal, we establish that benefit from noise can be gained for different noises and confirm further that the subthreshold SR exists in nonlinear signal detection. The efficacy of SR is significantly improved and the minimum of Per can dramatically approach to zero as the sample number increases. These results show the robustness of SR in signal detection and extend the applicability of SR in signal processing.

Decentralized Handoff for Microcellular Mobile Communication System using Fuzzy Logic

Efficient handoff algorithms are a cost-effective way of enhancing the capacity and QoS of cellular system. The higher value of hysteresis effectively prevents unnecessary handoffs but causes undesired cell dragging. This undesired cell dragging causes interference or could lead to dropped calls in microcellular environment. The problems are further exacerbated by the corner effect phenomenon which causes the signal level to drop by 20-30 dB in 10-20 meters. Thus, in order to maintain reliable communication in a microcellular system new and better handoff algorithms must be developed. A fuzzy based handoff algorithm is proposed in this paper as a solution to this problem. Handoff on the basis of ratio of slopes of normal signal loss to the actual signal loss is presented. The fuzzy based solution is supported by comparing its results with the results obtained in analytical solution.

Ultra-Light Overhead Conveyor Systems for Logistics Applications

Overhead conveyor systems satisfy by their simple construction, wide application range and their full compatibility with other manufacturing systems, which are designed according to international standards. Ultra-light overhead conveyor systems are rope-based conveying systems with individually driven vehicles. The vehicles can move automatically on the rope and this can be realized by energy and signals. Crossings are realized by switches. Overhead conveyor systems are particularly used in the automotive industry but also at post offices. Overhead conveyor systems always must be integrated with a logistical process by finding the best way for a cheaper material flow and in order to guarantee precise and fast workflows. With their help, any transport can take place without wasting ground and space, without excessive company capacity, lost or damaged products, erroneous delivery, endless travels and without wasting time. Ultra-light overhead conveyor systems provide optimal material flow, which produces profit and saves time. This article illustrates the advantages of the structure of the ultra-light overhead conveyor systems in logistics applications and explains the steps of their system design. After an illustration of the steps, currently available systems on the market will be shown by means of their technical characteristics. Due to their simple construction, demands to an ultra-light overhead conveyor system will be illustrated.

Detection of Power Quality Disturbances using Wavelet Transform

This paper presents features that characterize power quality disturbances from recorded voltage waveforms using wavelet transform. The discrete wavelet transform has been used to detect and analyze power quality disturbances. The disturbances of interest include sag, swell, outage and transient. A power system network has been simulated by Electromagnetic Transients Program. Voltage waveforms at strategic points have been obtained for analysis, which includes different power quality disturbances. Then wavelet has been chosen to perform feature extraction. The outputs of the feature extraction are the wavelet coefficients representing the power quality disturbance signal. Wavelet coefficients at different levels reveal the time localizing information about the variation of the signal.

Effect Comparison of Speckle Noise Reduction Filters on 2D-Echocardigraphic Images

Echocardiography imaging is one of the most common diagnostic tests that are widely used for assessing the abnormalities of the regional heart ventricle function. The main goal of the image enhancement task in 2D-echocardiography (2DE) is to solve two major anatomical structure problems; speckle noise and low quality. Therefore, speckle noise reduction is one of the important steps that used as a pre-processing to reduce the distortion effects in 2DE image segmentation. In this paper, we present the common filters that based on some form of low-pass spatial smoothing filters such as Mean, Gaussian, and Median. The Laplacian filter was used as a high-pass sharpening filter. A comparative analysis was presented to test the effectiveness of these filters after being applied to original 2DE images of 4-chamber and 2-chamber views. Three statistical quantity measures: root mean square error (RMSE), peak signal-to-ratio (PSNR) and signal-tonoise ratio (SNR) are used to evaluate the filter performance quantitatively on the output enhanced image.

Conditions on Blind Source Separability of Linear FIR-MIMO Systems with Binary Inputs

In this note, we investigate the blind source separability of linear FIR-MIMO systems. The concept of semi-reversibility of a system is presented. It is shown that for a semi-reversible system, if the input signals belong to a binary alphabet, then the source data can be blindly separated. One sufficient condition for a system to be semi-reversible is obtained. It is also shown that the proposed criteria is weaker than that in the literature which requires that the channel matrix is irreducible/invertible or reversible.

A New Damage Identification Strategy for SHM Based On FBGs and Bayesian Model Updating Method

One of the difficulties of the vibration-based damage identification methods is the nonuniqueness of the results of damage identification. The different damage locations and severity may cause the identical response signal, which is even more severe for detection of the multiple damage. This paper proposes a new strategy for damage detection to avoid this nonuniqueness. This strategy firstly determines the approximates damage area based on the statistical pattern recognition method using the dynamic strain signal measured by the distributed fiber Bragg grating, and then accurately evaluates the damage information based on the Bayesian model updating method using the experimental modal data. The stochastic simulation method is then used to compute the high-dimensional integral in the Bayesian problem. Finally, an experiment of the plate structure, simulating one part of mechanical structure, is used to verify the effectiveness of this approach.

Fuzzy Logic Based Improved Range Free Localization for Wireless Sensor Networks

Wireless Sensor Networks (WSNs) are used to monitor/observe vast inaccessible regions through deployment of large number of sensor nodes in the sensing area. For majority of WSN applications, the collected data needs to be combined with geographic information of its origin to make it useful for the user; information received from remote Sensor Nodes (SNs) that are several hops away from base station/sink is meaningless without knowledge of its source. In addition to this, location information of SNs can also be used to propose/develop new network protocols for WSNs to improve their energy efficiency and lifetime. In this paper, range free localization protocols for WSNs have been proposed. The proposed protocols are based on weighted centroid localization technique, where the edge weights of SNs are decided by utilizing fuzzy logic inference for received signal strength and link quality between the nodes. The fuzzification is carried out using (i) Mamdani, (ii) Sugeno, and (iii) Combined Mamdani Sugeno fuzzy logic inference. Simulation results demonstrate that proposed protocols provide better accuracy in node localization compared to conventional centroid based localization protocols despite presence of unintentional radio frequency interference from radio frequency (RF) sources operating in same frequency band.