Variational EM Inference Algorithm for Gaussian Process Classification Model with Multiclass and Its Application to Human Action Classification

In this paper, we propose the variational EM inference algorithm for the multi-class Gaussian process classification model that can be used in the field of human behavior recognition. This algorithm can drive simultaneously both a posterior distribution of a latent function and estimators of hyper-parameters in a Gaussian process classification model with multiclass. Our algorithm is based on the Laplace approximation (LA) technique and variational EM framework. This is performed in two steps: called expectation and maximization steps. First, in the expectation step, using the Bayesian formula and LA technique, we derive approximately the posterior distribution of the latent function indicating the possibility that each observation belongs to a certain class in the Gaussian process classification model. Second, in the maximization step, using a derived posterior distribution of latent function, we compute the maximum likelihood estimator for hyper-parameters of a covariance matrix necessary to define prior distribution for latent function. These two steps iteratively repeat until a convergence condition satisfies. Moreover, we apply the proposed algorithm with human action classification problem using a public database, namely, the KTH human action data set. Experimental results reveal that the proposed algorithm shows good performance on this data set.

Awareness and Attitudes of Primary Grade Teachers (1-4thGrade) towards Inclusive Education

The present research aimed at studying the awareness and attitudes of teachers towards inclusive education. The sample consisted of 60 teachers, teaching in the primary section (1st – 4th) of regular schools affiliated to the SSC board in Mumbai. Sample was selected by Multi-stage cluster sampling technique. A semi-structured self-constructed interview schedule and a self-constructed attitude scale was used to study the awareness of teachers about disability and Inclusive education, and their attitudes towards inclusive education respectively. Themes were extracted from the interview data and quantitative data was analyzed using SPSS package. Results revealed that teachers had some amount of awareness but an inadequate amount of information on disabilities and inclusive education. Disability to most (37) teachers meant “an inability to do something”. The difference between disability and handicap was stated by most as former being cognitive while handicap being physical in nature. With regard to Inclusive education, a large number (46) stated that they were unaware of the term and did not know what it meant. Majority (52) of them perceived maximum challenges for themselves in an inclusive set up, and emphasized on the role of teacher training courses in the area of providing knowledge (49) and training in teaching methodology (53). Although, 83.3% of teachers held a moderately positive attitude towards inclusive education, a large percentage (61.6%) of participants felt that being in inclusive set up would be very challenging for both children with special needs and without special needs. Though, most (49) of the teachers stated that children with special needs should be educated in regular classroom but they further clarified that only those should be in a regular classroom who have physical impairments of mild or moderate degree.

The Role of European Union in Global Governance

Despite all the wide research and literature on the subject, changing and challenging times often present themselves with new objectives, fluid politics, and everlasting point of views. Much is said about the subject and the trend nowadays is watching every European Union (EU) intervention as a form of neo colonialism or a form of establishing new markets. The paper will try to establish a perspective on EU influences, policies and impacts analyzed from multidimensional point of view, not limiting itself on a narrow external dimension, focusing on a broader understanding of it diverse contribution to global governance and peace keeping. Tending to be critical, this paper tends to fall out of extremes, nether holding a Eurocentric position, nor falling for cheap critic to the whole failures and impact of EU policies. The ambition is to show EU as a contributing factor while keeping in mind its nature as a multi layered actor and with not necessarily coinciding interests among its member states.

Bit Model Based Key Management Scheme for Secure Group Communication

For the last decade, researchers have started to focus their interest on Multicast Group Key Management Framework. The central research challenge is secure and efficient group key distribution. The present paper is based on the Bit model based Secure Multicast Group key distribution scheme using the most popular absolute encoder output type code named Gray Code. The focus is of two folds. The first fold deals with the reduction of computation complexity which is achieved in our scheme by performing fewer multiplication operations during the key updating process. To optimize the number of multiplication operations, an O(1) time algorithm to multiply two N-bit binary numbers which could be used in an N x N bit-model of reconfigurable mesh is used in this proposed work. The second fold aims at reducing the amount of information stored in the Group Center and group members while performing the update operation in the key content. Comparative analysis to illustrate the performance of various key distribution schemes is shown in this paper and it has been observed that this proposed algorithm reduces the computation and storage complexity significantly. Our proposed algorithm is suitable for high performance computing environment.

Analysis of Heuristic Based Hybrid Simulated Annealing Algorithm for Multiprocessor Task Scheduling

Multiprocessor task scheduling problem for dependent and independent tasks is computationally complex problem. Many methods are proposed to achieve optimal running time. As the multiprocessor task scheduling is NP hard in nature, therefore, many heuristics are proposed which have improved the makespan of the problem. But due to problem specific nature, the heuristic method which provide best results for one problem, might not provide good results for another problem. So, Simulated Annealing which is meta heuristic approach is considered. It can be applied on all types of problems. However, due to many runs, meta heuristic approach takes large computation time. Hence, the hybrid approach is proposed by combining the Duplication Scheduling Heuristic and Simulated Annealing (SA) and the makespan results of Simple Simulated Annealing and Hybrid approach are analyzed.

Numerical Analysis of End Plate Bolted Connection with Corrugated Beam

Steel extended end plate bolted connections are recommended to be widely utilized in special moment-resisting frame subjected to monotonic loading. Improper design of steel beam to column connection can lead to the collapse and fatality of structures. Therefore comprehensive research studies of beam to column connection design should be carried out. Also the performance and effect of corrugated on the strength of beam column end plate connection up to failure under monotonic loading in horizontal direction is presented in this paper. The non-linear elastic–plastic behavior has been considered through a finite element analysis using the multi-purpose software package LUSAS. The effect of vertically and horizontally types of corrugated web was also investigated.

Design of Mobile Teaching for Students Collaborative Learning in Distance Higher Education

The aim of the study is to describe and analyze design of mobile teaching for students collaborative learning in distance higher education with a focus on mobile technologies as online webinars (web-based seminars or conferencing) by using laptops, smart phones, or tablets. These multimedia tools can provide face-toface interactions, recorded flipped classroom videos and parallel chat communications. The data collection consists of interviews with 22 students and observations of online face-to-face webinars, as well two surveys. Theoretically, the study joins the research tradition of Computer Supported Collaborative learning, CSCL, as well as Computer Self-Efficacy, CSE concerned with individuals’ media and information literacy. Important conclusions from the study demonstrated mobile interactions increased student centered learning. As the students were appreciating the working methods, they became more engaged and motivated. The mobile technology using among student also contributes to increased flexibility between space and place, as well as media and information literacy.

Critical Analysis of Different Actuation Techniques for a Micro Cantilever

The objective of this work is to carryout critical comparison of different actuation mechanisms like electrostatic, thermal, piezoelectric, and magnetic with reference to a micro cantilever. The relevant parameters like force generated, displacement are compared in actuation methods. With these results, helps in choosing the best actuation method for a particular application. In this study, Comsol/Multiphysics software is used. Modeling and simulation is done by considering the micro cantilever of same dimensions as an actuator using all the above mentioned actuation techniques. In addition to their small size, micro actuators consume very little power and are capable of accurate results. In this work, a comparison of actuation mechanisms is done to decide the efficient system in micro domain.

Link Availability Estimation for Modified AOMDV Protocol

Routing in adhoc networks is a challenge as nodes are mobile, and links are constantly created and broken. Present ondemand adhoc routing algorithms initiate route discovery after a path breaks, incurring significant cost to detect disconnection and establish a new route. Specifically, when a path is about to be broken, the source is warned of the likelihood of a disconnection. The source then initiates path discovery early, avoiding disconnection totally. A path is considered about to break when link availability decreases. This study modifies Adhoc On-demand Multipath Distance Vector routing (AOMDV) so that route handoff occurs through link availability estimation.

Soliton Interaction in Multi-Core Optical Fiber: Application to WDM System

The analytical bright two soliton solution of the 3- coupled nonlinear Schrödinger equations with variable coefficients in birefringent optical fiber is obtained by Darboux transformation method. To the design of ultra-speed optical devices, Soliton interaction and control in birefringence fiber is investigated. Lax pair is constructed for N coupled NLS system through AKNS method. Using two-soliton solution, we demonstrate different interaction behaviors of solitons in birefringent fiber depending on the choice of control parameters. Our results shows that interactions of optical solitons have some specific applications such as construction of logic gates, optical computing, soliton switching, and soliton amplification in wavelength division multiplexing (WDM) system.

Measurements of MRI R2* Relaxation Rate in Liver and Muscle: Animal Model

This study was aimed to measure effective transverse relaxation rates (R2*) in the liver and muscle of normal New Zealand White (NZW) rabbits. R2* relaxation rate has been widely used in various hepatic diseases for iron overload by quantifying iron contents in liver. R2* relaxation rate is defined as the reciprocal of T2* relaxation time and mainly depends on the constituents of tissue. Different tissues would have different R2* relaxation rates. The signal intensity decay in Magnetic resonance imaging (MRI) may be characterized by R2* relaxation rates. In this study, a 1.5T GE Signa HDxt whole body MR scanner equipped with an 8-channel high resolution knee coil was used to observe R2* values in NZW rabbit’s liver and muscle. Eight healthy NZW rabbits weighted 2 ~ 2.5 kg were recruited. After anesthesia using Zoletil 50 and Rompun 2% mixture, the abdomen of rabbit was landmarked at the center of knee coil to perform 3-plane localizer scan using fast spoiled gradient echo (FSPGR) pulse sequence. Afterwards, multi-planar fast gradient echo (MFGR) scans were performed with 8 various echo times (TEs) to acquire images for R2* measurements. Regions of interest (ROIs) at liver and muscle were measured using Advantage workstation. Finally, the R2* was obtained by a linear regression of ln(sı) on TE. The results showed that the longer the echo time, the smaller the signal intensity. The R2* values of liver and muscle were 44.8 ± 10.9 s-1 and 37.4 ± 9.5 s-1, respectively. It implies that the iron concentration of liver is higher than that of muscle. In conclusion, the more the iron contents in tissue, the higher the R2*. The correlations between R2* and iron content in NZW rabbits might be valuable for further exploration.

The Sequential Estimation of the Seismoacoustic Source Energy in C-OTDR Monitoring Systems

The practical efficient approach is suggested for estimation of the seismoacoustic sources energy in C-OTDR monitoring systems. This approach is represents the sequential plan for confidence estimation both the seismoacoustic sources energy, as well the absorption coefficient of the soil. The sequential plan delivers the non-asymptotic guaranteed accuracy of obtained estimates in the form of non-asymptotic confidence regions with prescribed sizes. These confidence regions are valid for a finite sample size when the distributions of the observations are unknown. Thus, suggested estimates are non-asymptotic and nonparametric, and also these estimates guarantee the prescribed estimation accuracy in form of prior prescribed size of confidence regions, and prescribed confidence coefficient value.

Statistical Modeling of Local Area Fading Channels Based on Triply Stochastic Filtered Marked Poisson Point Processes

Fading noise degrades the performance of cellular communication, most notably in femto- and pico-cells in 3G and 4G systems. When the wireless channel consists of a small number of scattering paths, the statistics of fading noise is not analytically tractable and poses a serious challenge to developing closed canonical forms that can be analysed and used in the design of efficient and optimal receivers. In this context, noise is multiplicative and is referred to as stochastically local fading. In many analytical investigation of multiplicative noise, the exponential or Gamma statistics are invoked. More recent advances by the author of this paper utilized a Poisson modulated-weighted generalized Laguerre polynomials with controlling parameters and uncorrelated noise assumptions. In this paper, we investigate the statistics of multidiversity stochastically local area fading channel when the channel consists of randomly distributed Rayleigh and Rician scattering centers with a coherent Nakagami-distributed line of sight component and an underlying doubly stochastic Poisson process driven by a lognormal intensity. These combined statistics form a unifying triply stochastic filtered marked Poisson point process model.

Integrated Education at Jazan University: Budding Hope for Employability

Experience is what makes a man perfect. Though we tend to learn many a different things in life through practice still we need to go an extra mile to gain experience which would be profitable only when it is integrated with regular practice. A clear phenomenal idea is that every teacher is a learner. The centralized idea of this paper would focus on the integrated practices carried out among the students of Jizan University which enhances learning through experiences. Integrated practices like student-directed activities, balanced curriculum, phonological based activities and use of consistent language would enlarge the vision and mission of students to earn experience through learning. Students who receive explicit instruction and guidance could practice the skills and strategies through student-directed activities such as peer tutoring and cooperative learning. The second effective practice is to use consistent language. Consistent language provides students a model for talking about the new concepts which also enables them to communicate without hindrances. Phonological awareness is an important early reading skill for all students. Students generally have phonemic awareness in their home language can often transfer that knowledge to a second language. And also a balanced curriculum requires instruction in all the elements of reading. Reading is the most effective skill when both basic and higher-order skills are included on a daily basis. Computer based reading and listening skills will empower students to understand language in a better way. English language learners can benefit from sound reading instruction even before they are fully proficient in English as long as the instruction is comprehensible. Thus, if students have to be well equipped in learning they should foreground themselves in various integrated practices through multifarious experience for which teachers are moderators and trainers. This type of learning prepares the students for a constantly changing society which helps them to meet the competitive world around them for better employability fulfilling the vision and mission of the institution.

A Methodology for Investigating Public Opinion Using Multilevel Text Analysis

Recently, many users have begun to frequently share their opinions on diverse issues using various social media. Therefore, numerous governments have attempted to establish or improve national policies according to the public opinions captured from various social media. In this paper, we indicate several limitations of the traditional approaches to analyze public opinion on science and technology and provide an alternative methodology to overcome these limitations. First, we distinguish between the science and technology analysis phase and the social issue analysis phase to reflect the fact that public opinion can be formed only when a certain science and technology is applied to a specific social issue. Next, we successively apply a start list and a stop list to acquire clarified and interesting results. Finally, to identify the most appropriate documents that fit with a given subject, we develop a new logical filter concept that consists of not only mere keywords but also a logical relationship among the keywords. This study then analyzes the possibilities for the practical use of the proposed methodology thorough its application to discover core issues and public opinions from 1,700,886 documents comprising SNS, blogs, news, and discussions.

Hybrid Algorithm for Frequency Channel Selection in Wi-Fi Networks

This article proposes a hybrid algorithm for spectrum allocation in cognitive radio networks based on the algorithms Analytical Hierarchical Process (AHP) and Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) to improve the performance of the spectrum mobility of secondary users in cognitive radio networks. To calculate the level of performance of the proposed algorithm a comparative analysis between the proposed AHP-TOPSIS, Grey Relational Analysis (GRA) and Multiplicative Exponent Weighting (MEW) algorithm is performed. Four evaluation metrics are used. These metrics are accumulative average of failed handoffs, accumulative average of handoffs performed, accumulative average of transmission bandwidth, and accumulative average of the transmission delay. The results of the comparison show that AHP-TOPSIS Algorithm provides 2.4 times better performance compared to a GRA Algorithm and, 1.5 times better than the MEW Algorithm.

A Coupled Model for Two-Phase Simulation of a Heavy Water Pressure Vessel Reactor

A Multi-dimensional computational fluid dynamics (CFD) two-phase model was developed with the aim to simulate the in-core coolant circuit of a pressurized heavy water reactor (PHWR) of a commercial nuclear power plant (NPP). Due to the fact that this PHWR is a Reactor Pressure Vessel type (RPV), three-dimensional (3D) detailed modelling of the large reservoirs of the RPV (the upper and lower plenums and the downcomer) were coupled with an in-house finite volume one-dimensional (1D) code in order to model the 451 coolant channels housing the nuclear fuel. Regarding the 1D code, suitable empirical correlations for taking into account the in-channel distributed (friction losses) and concentrated (spacer grids, inlet and outlet throttles) pressure losses were used. A local power distribution at each one of the coolant channels was also taken into account. The heat transfer between the coolant and the surrounding moderator was accurately calculated using a two-dimensional theoretical model. The implementation of subcooled boiling and condensation models in the 1D code along with the use of functions for representing the thermal and dynamic properties of the coolant and moderator (heavy water) allow to have estimations of the in-core steam generation under nominal flow conditions for a generic fission power distribution. The in-core mass flow distribution results for steady state nominal conditions are in agreement with the expected from design, thus getting a first assessment of the coupled 1/3D model. Results for nominal condition were compared with those obtained with a previous 1/3D single-phase model getting more realistic temperature patterns, also allowing visualize low values of void fraction inside the upper plenum. It must be mentioned that the current results were obtained by imposing prescribed fission power functions from literature. Therefore, results are showed with the aim of point out the potentiality of the developed model.

Pushover Analysis of Masonry Infilled Reinforced Concrete Frames for Performance Based Design for Near Field Earthquakes

Non-linear dynamic time history analysis is considered as the most advanced and comprehensive analytical method for evaluating the seismic response and performance of multi-degree-of-freedom building structures under the influence of earthquake ground motions. However, effective and accurate application of the method requires the implementation of advanced hysteretic constitutive models of the various structural components including masonry infill panels. Sophisticated computational research tools that incorporate realistic hysteresis models for non-linear dynamic time-history analysis are not popular among the professional engineers as they are not only difficult to access but also complex and time-consuming to use. In addition, commercial computer programs for structural analysis and design that are acceptable to practicing engineers do not generally integrate advanced hysteretic models which can accurately simulate the hysteresis behavior of structural elements with a realistic representation of strength degradation, stiffness deterioration, energy dissipation and ‘pinching’ under cyclic load reversals in the inelastic range of behavior. In this scenario, push-over or non-linear static analysis methods have gained significant popularity, as they can be employed to assess the seismic performance of building structures while avoiding the complexities and difficulties associated with non-linear dynamic time-history analysis. “Push-over” or non-linear static analysis offers a practical and efficient alternative to non-linear dynamic time-history analysis for rationally evaluating the seismic demands. The present paper is based on the analytical investigation of the effect of distribution of masonry infill panels over the elevation of planar masonry infilled reinforced concrete [R/C] frames on the seismic demands using the capacity spectrum procedures implementing nonlinear static analysis [pushover analysis] in conjunction with the response spectrum concept. An important objective of the present study is to numerically evaluate the adequacy of the capacity spectrum method using pushover analysis for performance based design of masonry infilled R/C frames for near-field earthquake ground motions.

Model of Multi-Criteria Evaluation for Railway Lines

The paper is focused to the evaluation railway tracks in the Slovakia by using Multi-Criteria method. Evaluation of railway tracks has important impacts for the assessment of investment in technical equipment. Evaluation of railway tracks also has an important impact for the allocation of marshalling yards. Marshalling yards are in transport model as centers for the operation assigned catchment area. This model is one of the effective ways to meet the development strategy of the European Community's railways. By applying this model in practice, a transport company can guarantee a higher quality of service and then expect an increase in performance. The model is also applicable to other rail networks. This model supplements a theoretical problem of train formation problem of new ways of looking at evaluation of factors affecting the organization of wagon flows.

Multi-Layer Perceptron Neural Network Classifier with Binary Particle Swarm Optimization Based Feature Selection for Brain-Computer Interfaces

Brain-Computer Interfaces (BCIs) measure brain signals activity, intentionally and unintentionally induced by users, and provides a communication channel without depending on the brain’s normal peripheral nerves and muscles output pathway. Feature Selection (FS) is a global optimization machine learning problem that reduces features, removes irrelevant and noisy data resulting in acceptable recognition accuracy. It is a vital step affecting pattern recognition system performance. This study presents a new Binary Particle Swarm Optimization (BPSO) based feature selection algorithm. Multi-layer Perceptron Neural Network (MLPNN) classifier with backpropagation training algorithm and Levenberg-Marquardt training algorithm classify selected features.