Mass Transfer Modeling of Nitrate in an Ion Exchange Selective Resin

The rate of nitrate adsorption by a nitrate selective ion exchange resin was investigated in a well-stirred batch experiments. The kinetic experimental data were simulated with diffusion models including external mass transfer, particle diffusion and chemical adsorption. Particle pore volume diffusion and particle surface diffusion were taken into consideration separately and simultaneously in the modeling. The model equations were solved numerically using the Crank-Nicholson scheme. An optimization technique was employed to optimize the model parameters. All nitrate concentration decay data were well described with the all diffusion models. The results indicated that the kinetic process is initially controlled by external mass transfer and then by particle diffusion. The external mass transfer coefficient and the coefficients of pore volume diffusion and surface diffusion in all experiments were close to each other with the average value of 8.3×10-3 cm/S for external mass transfer coefficient. In addition, the models are more sensitive to the mass transfer coefficient in comparison with particle diffusion. Moreover, it seems that surface diffusion is the dominant particle diffusion in comparison with pore volume diffusion.

Measures and Influence of a Baw Filter on Digital Radio-Communications Signals

This work concerns the measurements of a Bulk Acoustic Waves (BAW) emission filter S parameters and compare with prototypes simulated types. Thanks to HP-ADS, a co-simulation of filters- characteristics in a digital radio-communication chain is performed. Four cases of modulation schemes are studied in order to illustrate the impact of the spectral occupation of the modulated signal. Results of simulations and co-simulation are given in terms of Error Vector Measurements to be useful for a general sensibility analysis of 4th/3rd Generation (G.) emitters (wideband QAM and OFDM signals)

The Used of Environmental Ethics in Methods and Techniques of Environmental Management

Although, it is a long time that human know about the importance of environment in life, but at the last decade of 20 century, the space that was full of hot scientific, collegial and political were made in environmental challenge, So much that, this problem not only disarrange the peace and security of life, but also it has threatened human existence. One of the problems in last years that are significant for authorities is unsatisfactory achieved results against of using huge cost for magnificent environmental projects. This subject leads thinker to this thought that for solving the environmental problems it is needed new methods include of sociology, ethics and philosophic, etc. methods apart of technical affairs. Environment ethics is a new branch of philosophic ethics discussion that discusses about the ethics relationship between humans and universe that is around them. By notifying to the above considered affairs, in today world, necessity of environmental ethics for environment management is reduplicated. In the following the article has been focused on environmental ethics role and environmental management methods and techniques for developing it.

Dependence of Equilibrium, Kinetics and Thermodynamics of Zn (II) Ions Sorption from Water on Particle Size of Natural Hydroxyapatite Extracted from Bone Ash

Heavy metals have bad effects on environment and soils and it can uptake by natural HAP .natural Hap is an inexpensive material that uptake large amounts of various heavy metals like Zn (II) .Natural HAP (N-HAP), extracted from bovine cortical bone ash, is a good choice for substitution of commercial HAP. Several experiments were done to investigate the sorption capacity of Zn (II) to N-HAP in various particles sizes, temperatures, initial concentrations, pH and reaction times. In this study, the sorption of Zinc ions from a Zn solution onto HAP particles with sizes of 1537.6 nm and 47.6 nm at three initial pH values of 4.50, 6.00 and 7.50 was studied. The results showed that better performance was obtained through a 47.6 nm particle size and higher pH values. The experimental data were analyzed using Langmuir, Freundlich, and Arrhenius equations for equilibrium, kinetic and thermodynamic studies. The analysis showed a maximum adsorption capacity of NHAP as being 1.562 mmol/g at a pH of 7.5 and small particle size. Kinetically, the prepared N-HAP is a feasible sorbent that retains Zn (II) ions through a favorable and spontaneous sorption process.

Multi-Objective Analysis of Cost and Social Benefits in Rural Road Networks

This paper presents a multi-objective model for addressing two main objectives in designing rural roads networks: minimization of user operation costs and maximization of population covered. As limited budgets often exist, a reasonable trade-off must be obtained in order to account for both cost and social benefits in this type of networks. For a real-world rural road network, the model is solved, where all non-dominated solutions were obtained. Afterwards, an analysis is made on the (possibly) most interesting solutions (the ones providing better trade-offs). This analysis, coupled with the knowledge of the real world scenario (typically provided by decision makers) provides a suitable method for the evaluation of road networks in rural areas of developing countries.

Generating State-Based Testing Models for Object-Oriented Framework Interface Classes

An application framework provides a reusable design and implementation for a family of software systems. Application developers extend the framework to build their particular applications using hooks. Hooks are the places identified to show how to use and customize the framework. Hooks define the Framework Interface Classes (FICs) and the specifications of their methods. As part of the development life cycle, it is required to test the implementations of the FICs. Building a testing model to express the behavior of a class is an essential step for the generation of the class-based test cases. The testing model has to be consistent with the specifications provided for the hooks. State-based models consisting of states and transitions are testing models well suited to objectoriented software. Typically, hand-construction of a state-based model of a class behavior is expensive, error-prone, and may result in constructing an inconsistent model with the specifications of the class methods, which misleads verification results. In this paper, a technique is introduced to automatically synthesize a state-based testing model for FICs using the specifications provided for the hooks. A tool that supports the proposed technique is introduced.

On Stability of Stiffened Cylindrical Shells with Varying Material Properties

The static stability analysis of stiffened functionally graded cylindrical shells by isotropic rings and stringers subjected to axial compression is presented in this paper. The Young's modulus of the shell is taken to be function of the thickness coordinate. The fundamental relations, the equilibrium and stability equations are derived using the Sander's assumption. Resulting equations are employed to obtain the closed-form solution for the critical axial loads. The effects of material properties, geometric size and different material coefficient on the critical axial loads are examined. The analytical results are compared and validated using the finite element model.

Prediction of Soil Exchangeable Sodium Ratio Based on Soil Sodium Adsorption Ratio

Researchers have long had trouble in measurement of Exchangeable Sodium Ratio (ESR) at salt-affected soils. this parameter are often determined using laborious and time consuming laboratory tests, but it may be more appropriate and economical to develop a method which uses a more simple soil salinity index. The aim of this study was to determine the relationship between exchangeable sodium ratio (ESR) and sodium adsorption ratio (SAR) in some salt-affected soils of Khuzestan plain. To this purpose, two experimental areas (S1, S2) of Khuzestan province-IRAN were selected and four treatments with three replications by series of double rings were applied. The treatments were included 25cm, 50cm, 75cm and 100cm water application. The statistical results of the study indicated that in order to predict soil ESR based on soil SAR the linear regression model ESR=0.2048+0.0066 SAR (R2=0.53) & ESR=0.0564+0.0171 SAR (R2=0.76) can be recommended in Pilot S1 and S2 respectively.

Asymmetric and Kind of Bracing Effects on Steel Frames Under Earthquake Loads

Because of architectural condition and structure application, sometimes mass source and stiffness source are not coincidence, and the structure is irregular. The structure is also might be asymmetric as an asymmetric bracing in plan which leads to unbalance distribution of stiffness or because of unbalance distribution of the mass. Both condition lead to eccentricity and torsion in the structure. The deficiency of ordinary code to evaluate the performance of steel structures against earthquake has been caused designing based on performance level or capacity spectrum be used. By using the mentioned methods it is possible to design a structure that its behavior against different earthquakes be predictive. In this article 5- story buildings with different percentage of asymmetric which is because of stiffness changes and kind of bracing (x and chevron bracing) have been designed. The static and dynamic nonlinear analysis under three acceleration recording has been done. Finally performance level of the structure has been evaluated.

Modeling and Simulation of PSM DC-DC Buck Converter

A DC-to-DC converter for applications involving a source with widely varying voltage conditions with loads requiring constant voltage from full load down to no load is presented. The switching regulator considered is a Buck converter with Pulse Skipping Modulation control whereby pulses applied to the switch are blocked or released on output voltage crossing a predetermined value. Results of the study on the performance of regulator circuit are presented. The regulator regulates over a wide input voltage range with slightly higher ripple content and good transient response. Input current spectrum indicates a good EMI performance with crowding of components at low frequency range.

Central Asia and Kazakhstan: In Search of Civic Identity

Mankind has entered into an extremely complex and controversial stage of its development: the world is simultaneously organized and chaoticized, globalized and localized, combined and split. Analysts point out that globalization as a process of strengthening economic, cultural, financial and other ties of states cause many problems. In the economic sphere, it creates the danger of growing gap between the states, in the sphere of politics it leads to the weakening of political power and influence of nation-states.

Application of Extreme Learning Machine Method for Time Series Analysis

In this paper, we study the application of Extreme Learning Machine (ELM) algorithm for single layered feedforward neural networks to non-linear chaotic time series problems. In this algorithm the input weights and the hidden layer bias are randomly chosen. The ELM formulation leads to solving a system of linear equations in terms of the unknown weights connecting the hidden layer to the output layer. The solution of this general system of linear equations will be obtained using Moore-Penrose generalized pseudo inverse. For the study of the application of the method we consider the time series generated by the Mackey Glass delay differential equation with different time delays, Santa Fe A and UCR heart beat rate ECG time series. For the choice of sigmoid, sin and hardlim activation functions the optimal values for the memory order and the number of hidden neurons which give the best prediction performance in terms of root mean square error are determined. It is observed that the results obtained are in close agreement with the exact solution of the problems considered which clearly shows that ELM is a very promising alternative method for time series prediction.

Impregnation of Cupper into Kanuma Volcanic Ash Soil to Improve Mercury Sorption Capacity

The present study attempted to improve the Mercury (Hg) sorption capacity of kanuma volcanic ash soil (KVAS) by impregnating the cupper (Cu). Impregnation was executed by 1 and 5% Cu powder and sorption characterization of optimum Hg removing Cu impregnated KVAS was performed under different operational conditions, contact time, solution pH, sorbent dosage and Hg concentration using the batch operation studies. The 1% Cu impregnated KVAS pronounced optimum improvement (79%) in removing Hg from water compare to control. The present investigation determined the equilibrium state of maximum Hg adsorption at 6 h contact period. The adsorption revealed a pH dependent response and pH 3.5 showed maximum sorption capacity of Hg. Freundlich isotherm model is well fitted with the experimental data than that of Langmuir isotherm. It can be concluded that the Cu impregnation improves the Hg sorption capacity of KVAS and 1% Cu impregnated KVAS could be employed as cost-effective adsorbent media for treating Hg contaminated water.

Influence of Thermal and Mechanical Shocks to Cutting Edge Tool Life

This paper deals with the problem of thermal and mechanical shocks, which rising during operation, mostly at interrupted cut. Here will be solved their impact on the cutting edge tool life, the impact of coating technology on resistance to shocks and experimental determination of tool life in heating flame. Resistance of removable cutting edges against thermal and mechanical shock is an important indicator of quality as well as its abrasion resistance. Breach of the edge or its crumble may occur due to cyclic loading. We can observe it not only during the interrupted cutting (milling, turning areas abandoned hole or slot), but also in continuous cutting. This is due to the volatility of cutting force on cutting. Frequency of the volatility in this case depends on the type of rising chips (chip size element). For difficult-to-machine materials such as austenitic steel particularly happened at higher cutting speeds for the localization of plastic deformation in the shear plane and for the inception of separate elements substantially continuous chips. This leads to variations of cutting forces substantially greater than for other types of steel.

A Pilot Study for the Optimization of Routes for Waste Collection Vehicles for the Göçmenköy District of Lefkoşa

A pilot project was carried out in 2007 by the senior students of Cyprus International University, aiming to minimize the total cost of waste collection in Northern Cyprus. Many developed and developing countries have cut their transportation costs – which lies between 30-40% – down at a rate of 40% percent, by implementing network models for their route assignments. Accordingly, a network model was implemented at Göçmenköy district, to optimize and standardize waste collection works. The work environment of the employees were also redesigned to provide maximum ergonomy and to increase productivity, efficiency and safety. Following the collection of the required data including waste densities, lengths of roads and population, a model was constructed to allocate the optimal route assignment for the waste collection trucks at Göçmenköy district.

Communities of Ammonia-oxidizing Archaea and Bacteria in Enriched Nitrifying Activated Sludge

In this study, communities of ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB) in nitrifying activated sludge (NAS) prepared by enriching sludge from a municipal wastewater treatment plant in three continuous-flow reactors receiving an inorganic medium containing different ammonium concentrations of 2, 10, and 30 mM NH4 +-N (NAS2, NAS10, and NAS30, respectively) were investigated using molecular analysis. Results suggested that almost all AOA clones from NAS2, NAS10, and NAS30 fell into the same AOA cluster and AOA communities in NAS2 and NAS10 were more diverse than those of NAS30. In contrast to AOA, AOB communities obviously shifted from the seed sludge to enriched NASs and in each enriched NAS, communities of AOB varied particularly. The seed sludge contained members of N. communis cluster and N. oligotropha cluster. After it was enriched under various ammonium loads, members of N. communis cluster disappeared from all enriched NASs. AOB with high affinity to ammonia presented in NAS 2, AOB with low affinity to ammonia presented in NAS 30, and both types of AOB survived in NAS 10. These demonstrated that ammonium load significantly influenced AOB communities, but not AOA communities in enriched NASs.

Pressure Swing Adsorption with Cassava Adsorbent for Dehydration of Ethanol Vapor

Ethanol has become more attractive in fuel industry either as fuel itself or an additive that helps enhancing the octane number and combustibility of gasoline. This research studied a pressure swing adsorption using cassava-based adsorbent prepared from mixture of cassava starch and cassava pulp for dehydration of ethanol vapor. The apparatus used in the experiments consisted of double adsorption columns, an evaporator, and a vacuum pump. The feed solution contained 90-92 %wt of ethanol. Three process variables: adsorption temperatures (110, 120 and 130°C), adsorption pressures (1 and 2 bar gauge) and feed vapor flow rate (25, 50 and 75 % valve opening of the evaporator) were investigated. According to the experimental results, the optimal operating condition for this system was found to be at 2 bar gauge for adsorption pressure, 120°C for adsorption temperature and 25% valve opening of the evaporator. Production of 1.48 grams of ethanol with concentration higher than 99.5 wt% per gram of adsorbent was obtained. PSA with cassavabased adsorbent reported in this study could be an alternative method for production of nearly anhydrous ethanol. Dehydration of ethanol vapor achieved in this study is due to an interaction between free hydroxyl group on the glucose units of the starch and the water molecules.

Accurate Calculation of Free Frequencies of Beams and Rectangular Plates

An accurate procedure to determine free vibrations of beams and plates is presented. The natural frequencies are exact solutions of governing vibration equations witch load to a nonlinear homogeny system. The bilinear and linear structures considered simulate a bridge. The dynamic behavior of this one is analyzed by using the theory of the orthotropic plate simply supported on two sides and free on the two others. The plate can be excited by a convoy of constant or harmonic loads. The determination of the dynamic response of the structures considered requires knowledge of the free frequencies and the shape modes of vibrations. Our work is in this context. Indeed, we are interested to develop a self-consistent calculation of the Eigen frequencies. The formulation is based on the determination of the solution of the differential equations of vibrations. The boundary conditions corresponding to the shape modes permit to lead to a homogeneous system. Determination of the noncommonplace solutions of this system led to a nonlinear problem in Eigen frequencies. We thus, develop a computer code for the determination of the eigenvalues. It is based on a method of bisection with interpolation whose precision reaches 10 -12. Moreover, to determine the corresponding modes, the calculation algorithm that we develop uses the method of Gauss with a partial optimization of the "pivots" combined with an inverse power procedure. The Eigen frequencies of a plate simply supported along two opposite sides while considering the two other free sides are thus analyzed. The results could be generalized with the case of a beam by regarding it as a plate with low width. We give, in this paper, some examples of treated cases. The comparison with results presented in the literature is completely satisfactory.

Model for Knowledge Representation using Sample Problems and Designing a Program for Automatically Solving Algebraic Problems

Nowadays there are many methods for representing knowledge such as semantic network, neural network, and conceptual graphs. Nonetheless, these methods are not sufficiently efficient when applied to perform and deduce on knowledge domains about supporting in general education such as algebra, analysis or plane geometry. This leads to the introduction of computational network which is a useful tool for representation knowledge base, especially for computational knowledge, especially knowledge domain about general education. However, when dealing with a practical problem, we often do not immediately find a new solution, but we search related problems which have been solved before and then proposing an appropriate solution for the problem. Besides that, when finding related problems, we have to determine whether the result of them can be used to solve the practical problem or not. In this paper, the extension model of computational network has been presented. In this model, Sample Problems, which are related problems, will be used like the experience of human about practical problem, simulate the way of human thinking, and give the good solution for the practical problem faster and more effectively. This extension model is applied to construct an automatic system for solving algebraic problems in middle school.

Theoretical Investigation of Carbazole-Based D-D-π-A Organic Dyes for Efficient Dye-Sensitized Solar Cell

In this paper, four carbazole-based D-D-π-A organic dyes code as CCT2A, CCT3A, CCT1PA and CCT2PA were reported. A series of these organic dyes containing identical donor and acceptor group but different π-system. The effect of replacing of thiophene by phenyl thiophene as π-system on the physical properties has been focused. The structural, energetic properties and absorption spectra were theoretically investigated by means of Density Functional Theory (DFT) and Time-Dependent Density Functional Theory (TD-DFT). The results show that nonplanar conformation due to steric hindrance in donor part (cabazolecarbazole unit) of dye molecule can prevent unfavorable dye aggregation. By means of the TD-DFT method, the absorption spectra were calculated by B3LYP and BHandHLYP to study the affect of hybrid functional on the excitation energy (Eg). The results revealed the increasing of thiophene units not only resulted in decreasing of Eg, but also found the shifting of absorption spectra to higher wavelength. TD-DFT/BHandHLYP calculated results are more strongly agreed with the experimental data than B3LYP functions. Furthermore, the adsorptions of CCT2A and CCT3A on the TiO2 anatase (101) surface were carried out by mean of the chemical periodic calculation. The result exhibit the strong adsorption energy. The calculated results provide our new organic dyes can be effectively used as dye for Dye Sensitized Solar Cell (DSC).