Oxide Based Resistive Random Access Memory Device for High Density Non Volatile Memory Applications

In this work, we demonstrated vertical RRAM device fabricated at the sidewall of contact hole structures for possible future 3-D stacking integrations. The fabricated devices exhibit polarity dependent bipolar resistive switching with small operation voltage of less than 1V for both set and reset process. A good retention of memory window ~50 times is maintained after 1000s voltage bias.

CMOS-Compatible Deposited Materials for Photonic Layers Integrated above Electronic Integrated Circuit

Silicon photonics has generated an increasing interest in recent years mainly for optical communications optical interconnects in microelectronic circuits or bio-sensing applications. The development of elementary passive and active components (including detectors and modulators), which are mainly fabricated on the silicon on insulator platform for CMOS-compatible fabrication, has reached such a performance level that the integration challenge of silicon photonics with microelectronic circuits should be addressed. Since crystalline silicon can only be grown from another silicon crystal, making it impossible to deposit in this state, the optical devices are typically limited to a single layer. An alternative approach is to integrate a photonic layer above the CMOS chip using back-end CMOS fabrication process. In this paper, various materials, including silicon nitride, amorphous silicon, and polycrystalline silicon, for this purpose are addressed.

Novel Security Strategy for Real Time Digital Videos

Now a days video data embedding approach is a very challenging and interesting task towards keeping real time video data secure. We can implement and use this technique with high-level applications. As the rate-distortion of any image is not confirmed, because the gain provided by accurate image frame segmentation are balanced by the inefficiency of coding objects of arbitrary shape, with a lot factors like losses that depend on both the coding scheme and the object structure. By using rate controller in association with the encoder one can dynamically adjust the target bitrate. This paper discusses about to keep secure videos by mixing signature data with negligible distortion in the original video, and to keep steganographic video as closely as possible to the quality of the original video. In this discussion we propose the method for embedding the signature data into separate video frames by the use of block Discrete Cosine Transform. These frames are then encoded by real time encoding H.264 scheme concepts. After processing, at receiver end recovery of original video and the signature data is proposed.

Utilization of Laser-Ablation Based Analytical Methods for Obtaining Complete Chemical Information of Algae

Themain goal of this article is to find efficient methods for elemental and molecular analysis of living microorganisms (algae) under defined environmental conditions and cultivation processes. The overall knowledge of chemical composition is obtained utilizing laser-based techniques, Laser- Induced Breakdown Spectroscopy (LIBS) for acquiring information about elemental composition and Raman Spectroscopy for gaining molecular information, respectively. Algal cells were suspended in liquid media and characterized using their spectra. Results obtained employing LIBS and Raman Spectroscopy techniques will help to elucidate algae biology (nutrition dynamics depending on cultivation conditions) and to identify algal strains, which have the potential for applications in metal-ion absorption (bioremediation) and biofuel industry. Moreover, bioremediation can be readily combined with production of 3rd generation biofuels. In order to use algae for efficient fuel production, the optimal cultivation parameters have to be determinedleading to high production of oil in selected cellswithout significant inhibition of the photosynthetic activity and the culture growth rate, e.g. it is necessary to distinguish conditions for algal strain containing high amount of higher unsaturated fatty acids. Measurements employing LIBS and Raman Spectroscopy were utilized in order to give information about alga Trachydiscusminutus with emphasis on the amount of the lipid content inside the algal cell and the ability of algae to withdraw nutrients from its environment and bioremediation (elemental composition), respectively. This article can serve as the reference for further efforts in describing complete chemical composition of algal samples employing laserablation techniques.

Coloured Reconfigurable Nets for Code Mobility Modeling

Code mobility technologies attract more and more developers and consumers. Numerous domains are concerned, many platforms are developed and interest applications are realized. However, developing good software products requires modeling, analyzing and proving steps. The choice of models and modeling languages is so critical on these steps. Formal tools are powerful in analyzing and proving steps. However, poorness of classical modeling language to model mobility requires proposition of new models. The objective of this paper is to provide a specific formalism “Coloured Reconfigurable Nets" and to show how this one seems to be adequate to model different kinds of code mobility.

A Hybrid Classification Method using Artificial Neural Network Based Decision Tree for Automatic Sleep Scoring

In this paper we propose a new classification method for automatic sleep scoring using an artificial neural network based decision tree. It attempts to treat sleep scoring progress as a series of two-class problems and solves them with a decision tree made up of a group of neural network classifiers, each of which uses a special feature set and is aimed at only one specific sleep stage in order to maximize the classification effect. A single electroencephalogram (EEG) signal is used for our analysis rather than depending on multiple biological signals, which makes greatly simplifies the data acquisition process. Experimental results demonstrate that the average epoch by epoch agreement between the visual and the proposed method in separating 30s wakefulness+S1, REM, S2 and SWS epochs was 88.83%. This study shows that the proposed method performed well in all the four stages, and can effectively limit error propagation at the same time. It could, therefore, be an efficient method for automatic sleep scoring. Additionally, since it requires only a small volume of data it could be suited to pervasive applications.

A Fully Parallel Reverse Converter

The residue number system (RNS) is popular in high performance computation applications because of its carry-free nature. The challenges of RNS systems design lie in the moduli set selection and in the reverse conversion from residue representation to weighted representation. In this paper, we proposed a fully parallel reverse conversion algorithm for the moduli set {rn - 2, rn - 1, rn}, based on simple mathematical relationships. Also an efficient hardware realization of this algorithm is presented. Our proposed converter is very faster and results to hardware savings, compared to the other reverse converters.

On the Parameter Optimization of Fuzzy Inference Systems

Nowadays, more engineering systems are using some kind of Artificial Intelligence (AI) for the development of their processes. Some well-known AI techniques include artificial neural nets, fuzzy inference systems, and neuro-fuzzy inference systems among others. Furthermore, many decision-making applications base their intelligent processes on Fuzzy Logic; due to the Fuzzy Inference Systems (FIS) capability to deal with problems that are based on user knowledge and experience. Also, knowing that users have a wide variety of distinctiveness, and generally, provide uncertain data, this information can be used and properly processed by a FIS. To properly consider uncertainty and inexact system input values, FIS normally use Membership Functions (MF) that represent a degree of user satisfaction on certain conditions and/or constraints. In order to define the parameters of the MFs, the knowledge from experts in the field is very important. This knowledge defines the MF shape to process the user inputs and through fuzzy reasoning and inference mechanisms, the FIS can provide an “appropriate" output. However an important issue immediately arises: How can it be assured that the obtained output is the optimum solution? How can it be guaranteed that each MF has an optimum shape? A viable solution to these questions is through the MFs parameter optimization. In this Paper a novel parameter optimization process is presented. The process for FIS parameter optimization consists of the five simple steps that can be easily realized off-line. Here the proposed process of FIS parameter optimization it is demonstrated by its implementation on an Intelligent Interface section dealing with the on-line customization / personalization of internet portals applied to E-commerce.

Structural Sustainability Techniques for RC High Rise Buildings

Over the early years of the 21st century, cities throughout the Middle East, particularly in the Gulf region have expanded more rapidly than ever before. Given the presence of a large volume of high-rise buildings allover the region, the local authority aims to set a new standard for sustainable development; with an integrated approach to maintain a balance between economy, quality, environmental protection and safety of life. In the very near future, as mandatory requirements, sustainability will be the criteria that should be included in all building projects. It is well known in the building sustainability topics that structural design engineers do not have a key role in this matter. In addition, the LEED (Leadership in Energy and Environmental Design) has looked almost exclusively on the environmental components and materials specifications. The objective of this paper is to focus and establish groundwork for sustainability techniques and applications related to the RC high-rise buildings design, from the structural point of view. A set of recommendations related to local conditions, structural modeling and analysis is given, and some helpful suggestions for structural design team work are addressed. This paper attempts to help structural engineers in identifying the building sustainability design, in order to meet local needs and achieve alternative solutions at an early stage of project design.

Study on the Production of Chromite Refractory Brick from Local Chromite Ore

Chromite is one of the principal ore of chromium in which the metal exists as a complex oxide (FeO.Cr2O3).The prepared chromite can be widely used as refractory in high temperature applications. This study describes the use of local chromite ore as refractory material. To study the feasibility of local chromite, chemical analysis and refractoriness are firstly measured. To produce chromite refractory brick, it is pressed under a press of 400 tons, dried and fired at 1580°C for fifty two hours. Then, the standard properties such as cold crushing strength, apparent porosity, apparent specific gravity, bulk density and water absorption that the chromite brick should possess were measured. According to the results obtained, the brick made by local chromite ore was suitable for use as refractory brick.

Context Modeling and Context-Aware Service Adaptation for Pervasive Computing Systems

Devices in a pervasive computing system (PCS) are characterized by their context-awareness. It permits them to provide proactively adapted services to the user and applications. To do so, context must be well understood and modeled in an appropriate form which enhance its sharing between devices and provide a high level of abstraction. The most interesting methods for modeling context are those based on ontology however the majority of the proposed methods fail in proposing a generic ontology for context which limit their usability and keep them specific to a particular domain. The adaptation task must be done automatically and without an explicit intervention of the user. Devices of a PCS must acquire some intelligence which permits them to sense the current context and trigger the appropriate service or provide a service in a better suitable form. In this paper we will propose a generic service ontology for context modeling and a context-aware service adaptation based on a service oriented definition of context.

Ultra-Wideband Slot Antenna with Notched Band for World Interoperability for Microwave Access

In this paper a novel ultra-wideband (UWB) slot antenna with band notch characteristics for world interoperability for microwave access (WiMAX) is proposed. The designed antenna consists of a rectangular radiating patch and a ground plane with tapered shape slot. To realize a notch band, a curved parasitic element has been etched out along with the radiating patch. It is observed that by adjusting the length, thickness and position of the parasitic element, the proposed antenna can achieved an impedance bandwidth of 8.01GHz (2.84 to 10.85GHz) with a notched band of 3.28-3.85GHz. Compared to the recently reported band notch antennas, the proposed antenna has a simple configuration to realize band notch characteristics in order to mitigate the potential interference between WiMAX and UWB system. Furthermore, a stable radiation pattern and moderate gain except at the notched band makes the proposed antenna suitable for various UWB applications. 

Efficient Method for ECG Compression Using Two Dimensional Multiwavelet Transform

In this paper we introduce an effective ECG compression algorithm based on two dimensional multiwavelet transform. Multiwavelets offer simultaneous orthogonality, symmetry and short support, which is not possible with scalar two-channel wavelet systems. These features are known to be important in signal processing. Thus multiwavelet offers the possibility of superior performance for image processing applications. The SPIHT algorithm has achieved notable success in still image coding. We suggested applying SPIHT algorithm to 2-D multiwavelet transform of2-D arranged ECG signals. Experiments on selected records of ECG from MIT-BIH arrhythmia database revealed that the proposed algorithm is significantly more efficient in comparison with previously proposed ECG compression schemes.

Applications of Prediction and Identification Using Adaptive DCMAC Neural Networks

An adaptive dynamic cerebellar model articulation controller (DCMAC) neural network used for solving the prediction and identification problem is proposed in this paper. The proposed DCMAC has superior capability to the conventional cerebellar model articulation controller (CMAC) neural network in efficient learning mechanism, guaranteed system stability and dynamic response. The recurrent network is embedded in the DCMAC by adding feedback connections in the association memory space so that the DCMAC captures the dynamic response, where the feedback units act as memory elements. The dynamic gradient descent method is adopted to adjust DCMAC parameters on-line. Moreover, the analytical method based on a Lyapunov function is proposed to determine the learning-rates of DCMAC so that the variable optimal learning-rates are derived to achieve most rapid convergence of identifying error. Finally, the adaptive DCMAC is applied in two computer simulations. Simulation results show that accurate identifying response and superior dynamic performance can be obtained because of the powerful on-line learning capability of the proposed DCMAC.

Signal Reconstruction Using Cepstrum of Higher Order Statistics

This paper presents an algorithm for reconstructing phase and magnitude responses of the impulse response when only the output data are available. The system is driven by a zero-mean independent identically distributed (i.i.d) non-Gaussian sequence that is not observed. The additive noise is assumed to be Gaussian. This is an important and essential problem in many practical applications of various science and engineering areas such as biomedical, seismic, and speech processing signals. The method is based on evaluating the bicepstrum of the third-order statistics of the observed output data. Simulations results are presented that demonstrate the performance of this method.

Effect of Surface Pretreatments on Nanocrystalline Diamond Deposited On Silicon Nitride Substrates

The deposition of diamond films on a Si3N4 substrate is an attractive technique for industrial applications because of the excellent properties of diamond. Pretreatment of substrate is very important prior to diamond deposition to promote nucleation and adhesion between coating and substrate. Deposition of nanocrystalline diamonds films on silicon nitride substrate have been carried out by HF-CVD technique using mixture of methane and hydrogen gases. Different pretreatment of substrate including chemical etching consists of hot acid etching and basic etching and mechanical etching were used to study the quality of diamond formed on the substrate. The structure and morphology of diamond coating have been studied using X-ray Diffraction (XRD) and Scanning Electron Microscope (SEM) while diamond film quality has been characterized using Raman spectroscopy. AFM was used to investigate the effect of chemical etching and mechanical pretreatment on the surface roughness of the substrates and the resultant morphology of nanocrystalline diamond. It was found that diamond film deposited on as-received, basic etched and grinded substrate shows the morphology of cauliflower while blasted and acidic etched substrates produce smooth, continuous diamond film. However, the Raman investigation did not show any deviation in quality of diamond film for any pretreatment.

Temporal Extension to OWL Ontologies

Ontologies play an important role in semantic web applications and are often developed by different groups and continues to evolve over time. The knowledge in ontologies changes very rapidly that make the applications outdated if they continue to use old versions or unstable if they jump to new versions. Temporal frames using frame versioning and slot versioning are used to take care of dynamic nature of the ontologies. The paper proposes new tags and restructured OWL format enabling the applications to work with the old or new version of ontologies. Gene Ontology, a very dynamic ontology, has been used as a case study to explain the OWL Ontology with Temporal Tags.

Coerced Delay and Multi Additive Constraints QoS Routing Schemes

IP networks are evolving from data communication infrastructure into many real-time applications such as video conferencing, IP telephony and require stringent Quality of Service (QoS) requirements. A rudimentary issue in QoS routing is to find a path between a source-destination pair that satisfies two or more endto- end constraints and termed to be NP hard or complete. In this context, we present an algorithm Multi Constraint Path Problem Version 3 (MCPv3), where all constraints are approximated and return a feasible path in much quicker time. We present another algorithm namely Delay Coerced Multi Constrained Routing (DCMCR) where coerce one constraint and approximate the remaining constraints. Our algorithm returns a feasible path, if exists, in polynomial time between a source-destination pair whose first weight satisfied by the first constraint and every other weight is bounded by remaining constraints by a predefined approximation factor (a). We present our experimental results with different topologies and network conditions.

Comparative Evaluation of Color-Based Video Signatures in the Presence of Various Distortion Types

The robustness of color-based signatures in the presence of a selection of representative distortions is investigated. Considered are five signatures that have been developed and evaluated within a new modular framework. Two signatures presented in this work are directly derived from histograms gathered from video frames. The other three signatures are based on temporal information by computing difference histograms between adjacent frames. In order to obtain objective and reproducible results, the evaluations are conducted based on several randomly assembled test sets. These test sets are extracted from a video repository that contains a wide range of broadcast content including documentaries, sports, news, movies, etc. Overall, the experimental results show the adequacy of color-histogram-based signatures for video fingerprinting applications and indicate which type of signature should be preferred in the presence of certain distortions.

Denial of Service (DOS) Attack and Its Possible Solutions in VANET

Vehicular Ad-hoc Network (VANET) is taking more attention in automotive industry due to the safety concern of human lives on roads. Security is one of the safety aspects in VANET. To be secure, network availability must be obtained at all times since availability of the network is critically needed when a node sends any life critical information to other nodes. However, it can be expected that security attacks are likely to increase in the coming future due to more and more wireless applications being developed and deployed onto the well-known expose nature of the wireless medium. In this respect, the network availability is exposed to many types of attacks. In this paper, Denial of Service (DOS) attack on network availability is presented and its severity level in VANET environment is elaborated. A model to secure the VANET from the DOS attacks has been developed and some possible solutions to overcome the attacks have been discussed.