Compton Scattering of Annihilation Photons as a Short Range Quantum Key Distribution Mechanism

The angular distribution of Compton scattering of two quanta originating in the annihilation of a positron with an electron is investigated as a quantum key distribution (QKD) mechanism in the gamma spectral range. The geometry of coincident Compton scattering is observed on the two sides as a way to obtain partially correlated readings on the quantum channel. We derive the noise probability density function of a conceptually equivalent prepare and measure quantum channel in order to evaluate the limits of the concept in terms of the device secrecy capacity and estimate it at roughly 1.9 bits per 1 000 annihilation events. The high error rate is well above the tolerable error rates of the common reconciliation protocols; therefore, the proposed key agreement protocol by public discussion requires key reconciliation using classical error-correcting codes. We constructed a prototype device based on the readily available monolithic detectors in the least complex setup.

Dry Sliding Wear Behavior of Epoxy-Rubber Dust Composites

Composite pins of rubber dust collected from tyre retreading centres of trucks, cars and buses etc.and epoxy with weight percentages of 10. 15, and 20 % of rubber (weight fractions of 9, 13 and 17 % respectively) have been prepared in house with the help of a split wooden mould. The pins were tested in a pin-on-disc wear monitor to determine the co-efficient of friction and weight losses with varying speeds, loads and time. The wear volume and wear rates have also been found out for all these three specimens.. It is observed that all the specimens have exhibited very low coefficient of friction and low wear rates under dry sliding condition. Out of the above three samples tested, the specimen with 10 % rubber dust by weight has shown lowest wear rates. However a peculiar result i.e decreasing trend has been obtained with 20% reinforcement of rubber in epoxy while rubbed against steel at varying speeds. This might have occurred due to high surface finish of the disc and formation of a thin transfer layer from the composite

Viscosity Reduction and Upgrading of Athabasca Oilsands Bitumen by Natural Zeolite Cracking

Oilsands bitumen is an extremely important source of energy for North America. However, due to the presence of large molecules such as asphaltenes, the density and viscosity of the bitumen recovered from these sands are much higher than those of conventional crude oil. As a result the extracted bitumen has to be diluted with expensive solvents, or thermochemically upgraded in large, capital-intensive conventional upgrading facilities prior to pipeline transport. This study demonstrates that globally abundant natural zeolites such as clinoptilolite from Saint Clouds, New Mexico and Ca-chabazite from Bowie, Arizona can be used as very effective reagents for cracking and visbreaking of oilsands bitumen. Natural zeolite cracked oilsands bitumen products are highly recoverable (up to ~ 83%) using light hydrocarbons such as pentane, which indicates substantial conversion of heavier fractions to lighter components. The resultant liquid products are much less viscous, and have lighter product distribution compared to those produced from pure thermal treatment. These natural minerals impart similar effect on industrially extracted Athabasca bitumen.

Olive Leaves Extract Restored the antioxidant Perturbations in Red Blood Cells Hemolysate in Streptozotocin Induced Diabetic Rats

Oxidative stress and overwhelming free radicals associated with diabetes mellitus are likely to be linked with development of certain complication such as retinopathy, nephropathy and neuropathy. Treatment of diabetic subjects with antioxidant may be of advantage in attenuating these complications. Olive leaf (Oleaeuropaea), has been endowed with many beneficial and health promoting properties mostly linked to its antioxidant activity. This study aimed to evaluate the significance of supplementation of Olive leaves extract (OLE) in reducing oxidative stress, hyperglycemia and hyperlipidemia in Sterptozotocin (STZ)- induced diabetic rats. After induction of diabetes, a significant rise in plasma glucose, lipid profiles except High density lipoproteincholestrol (HDLc), malondialdehyde (MDA) and significant decrease of plasma insulin, HDLc and Plasma reduced glutathione GSH as well as alteration in enzymatic antioxidants was observed in all diabetic animals. During treatment of diabetic rats with 0.5g/kg body weight of Olive leaves extract (OLE) the levels of plasma (MDA) ,(GSH), insulin, lipid profiles along with blood glucose and erythrocyte enzymatic antioxidant enzymes were significantly restored to establish values that were not different from normal control rats. Untreated diabetic rats on the other hand demonstrated persistent alterations in the oxidative stress marker (MDA), blood glucose, insulin, lipid profiles and the antioxidant parameters. These results demonstrate that OLE may be of advantage in inhibiting hyperglycemia, hyperlipidemia and oxidative stress induced by diabetes and suggest that administration of OLE may be helpful in the prevention or at least reduced of diabetic complications associated with oxidative stress.

On Discretization of Second-order Derivatives in Smoothed Particle Hydrodynamics

Discretization of spatial derivatives is an important issue in meshfree methods especially when the derivative terms contain non-linear coefficients. In this paper, various methods used for discretization of second-order spatial derivatives are investigated in the context of Smoothed Particle Hydrodynamics. Three popular forms (i.e. "double summation", "second-order kernel derivation", and "difference scheme") are studied using one-dimensional unsteady heat conduction equation. To assess these schemes, transient response to a step function initial condition is considered. Due to parabolic nature of the heat equation, one can expect smooth and monotone solutions. It is shown, however in this paper, that regardless of the type of kernel function used and the size of smoothing radius, the double summation discretization form leads to non-physical oscillations which persist in the solution. Also, results show that when a second-order kernel derivative is used, a high-order kernel function shall be employed in such a way that the distance of inflection point from origin in the kernel function be less than the nearest particle distance. Otherwise, solutions may exhibit oscillations near discontinuities unlike the "difference scheme" which unconditionally produces monotone results.

Comparison of Different Types of Sources of Traffic Using SFQ Scheduling Discipline

In this paper, SFQ (Start Time Fair Queuing) algorithm is analyzed when this is applied in computer networks to know what kind of behavior the traffic in the net has when different data sources are managed by the scheduler. Using the NS2 software the computer networks were simulated to be able to get the graphs showing the performance of the scheduler. Different traffic sources were introduced in the scripts, trying to establish the real scenario. Finally the results were that depending on the data source, the traffic can be affected in different levels, when Constant Bite Rate is applied, the scheduler ensures a constant level of data sent and received, but the truth is that in the real life it is impossible to ensure a level that resists the changes in work load.

Sliding Joints and Soil-Structure Interaction

Use of a sliding joint is an effective method to decrease the stress in foundation structure where there is a horizontal deformation of subsoil (areas afflicted with underground mining) or horizontal deformation of a foundation structure (pre-stressed foundations, creep, shrinkage, temperature deformation). A convenient material for a sliding joint is a bitumen asphalt belt. Experiments for different types of bitumen belts were undertaken at the Faculty of Civil Engineering - VSB Technical University of Ostrava in 2008. This year an extension of the 2008 experiments is in progress and the shear resistance of a slide joint is being tested as a function of temperature in a temperature controlled room. In this paper experimental results of temperature dependant shear resistance are presented. The result of the experiments should be the sliding joint shear resistance as a function of deformation velocity and temperature. This relationship is used for numerical analysis of stress/strain relation between foundation structure and subsoil. Using a rheological slide joint could lead to a decrease of the reinforcement amount, and contribute to higher reliability of foundation structure and thus enable design of more durable and sustainable building structures.

Efficient Realization of an ADFE with a New Adaptive Algorithm

Decision feedback equalizers are commonly employed to reduce the error caused by intersymbol interference. Here, an adaptive decision feedback equalizer is presented with a new adaptation algorithm. The algorithm follows a block-based approach of normalized least mean square (NLMS) algorithm with set-membership filtering and achieves a significantly less computational complexity over its conventional NLMS counterpart with set-membership filtering. It is shown in the results that the proposed algorithm yields similar type of bit error rate performance over a reasonable signal to noise ratio in comparison with the latter one.

Production of Novel Bioactive Yogurt Enriched with Olive Fruit Polyphenols

In the course of the present work, plain (nonencapsulated) and microencapsulated polyphenols were produced using olive mill wastewater (OMW) as raw material, in order to be used for enrichment of yogurt and dairy products. The OMW was first clarified by using membrane technology and subsequently the contained poly-phenols were isolated by adsorption-desorption technique using selective macro-porous resins and finally recovered in dry form after been processed by RO membrane technique followed by freeze drying. Moreover, the polyphenols were encapsulated in modified starch by freeze drying in order to mask the color and bitterness effect and improve their functionality. The two products were used successfully as additives in yogurt preparations and the produced products were acceptable by the consumers and presented with certain advantage to the plain yogurt. For the herein proposed production scheme a patent application was already submitted.

Effect of Crude Oil Particle Elasticity on the Separation Efficiency of a Hydrocyclone

The separation efficiency of a hydrocyclone has extensively been considered on the rigid particle assumption. A collection of experimental studies have demonstrated their discrepancies from the modeling and simulation results. These discrepancies caused by the actual particle elasticity have generally led to a larger amount of energy consumption in the separation process. In this paper, the influence of particle elasticity on the separation efficiency of a hydrocyclone system was investigated through the Finite Element (FE) simulations using crude oil droplets as the elastic particles. A Reitema-s design hydrocyclone with a diameter of 8 mm was employed to investigate the separation mechanism of the crude oil droplets from water. The cut-size diameter eter of the crude oil was 10 - Ðçm in order to fit with the operating range of the adopted hydrocylone model. Typical parameters influencing the performance of hydrocyclone were varied with the feed pressure in the range of 0.3 - 0.6 MPa and feed concentration between 0.05 – 0.1 w%. In the simulation, the Finite Element scheme was applied to investigate the particle-flow interaction occurred in the crude oil system during the process. The interaction of a single oil droplet at the size of 10 - Ðçm to the flow field was observed. The feed concentration fell in the dilute flow regime so the particle-particle interaction was ignored in the study. The results exhibited the higher power requirement for the separation of the elastic particulate system when compared with the rigid particulate system.

Approximation for Average Error Probability of BPSK in the Presence of Phase Error

Phase error in communications systems degrades error performance. In this paper, we present a simple approximation for the average error probability of the binary phase shift keying (BPSK) in the presence of phase error having a uniform distribution on arbitrary intervals. For the simple approximation, we use symmetry and periodicity of a sinusoidal function. Approximate result for the average error probability is derived, and the performance is verified through comparison with simulation result.

Comparison of BER Performances for Conventional and Non-Conventional Mapping Schemes Used in OFDM

Orthogonal Frequency Division Multiplexing (OFDM) is one of the techniques for high speed data rate communication with main consideration for 4G and 5G systems. In OFDM, there are several mapping schemes which provide a way of parallel transmission. In this paper, comparisons of mapping schemes used by some standards have been made and also has been discussed about the performance of the non-conventional modulation technique. The Comparisons of Bit Error Rate (BER) performances for conventional and non-conventional modulation schemes have been done using MATLAB software. Mentioned schemes used in OFDM system can be selected on the basis of the requirement of power or spectrum efficiency and BER analysis.

Determination of Stress-Strain Characteristics of Railhead Steel using Image Analysis

True stress-strain curve of railhead steel is required to investigate the behaviour of railhead under wheel loading through elasto-plastic Finite Element (FE) analysis. To reduce the rate of wear, the railhead material is hardened through annealing and quenching. The Australian standard rail sections are not fully hardened and hence suffer from non-uniform distribution of the material property; usage of average properties in the FE modelling can potentially induce error in the predicted plastic strains. Coupons obtained at varying depths of the railhead were, therefore, tested under axial tension and the strains were measured using strain gauges as well as an image analysis technique, known as the Particle Image Velocimetry (PIV). The head hardened steel exhibit existence of three distinct zones of yield strength; the yield strength as the ratio of the average yield strength provided in the standard (σyr=780MPa) and the corresponding depth as the ratio of the head hardened zone along the axis of symmetry are as follows: (1.17 σyr, 20%), (1.06 σyr, 20%-80%) and (0.71 σyr, > 80%). The stress-strain curves exhibit limited plastic zone with fracture occurring at strain less than 0.1.

Improved Modulo 2n +1 Adder Design

Efficient modulo 2n+1 adders are important for several applications including residue number system, digital signal processors and cryptography algorithms. In this paper we present a novel modulo 2n+1 addition algorithm for a recently represented number system. The proposed approach is introduced for the reduction of the power dissipated. In a conventional modulo 2n+1 adder, all operands have (n+1)-bit length. To avoid using (n+1)-bit circuits, the diminished-1 and carry save diminished-1 number systems can be effectively used in applications. In the paper, we also derive two new architectures for designing modulo 2n+1 adder, based on n-bit ripple-carry adder. The first architecture is a faster design whereas the second one uses less hardware. In the proposed method, the special treatment required for zero operands in Diminished-1 number system is removed. In the fastest modulo 2n+1 adders in normal binary system, there are 3-operand adders. This problem is also resolved in this paper. The proposed architectures are compared with some efficient adders based on ripple-carry adder and highspeed adder. It is shown that the hardware overhead and power consumption will be reduced. As well as power reduction, in some cases, power-delay product will be also reduced.

A Wavelet Based Object Watermarking System for Image and Video

Efficient storage, transmission and use of video information are key requirements in many multimedia applications currently being addressed by MPEG-4. To fulfill these requirements, a new approach for representing video information which relies on an object-based representation, has been adopted. Therefore, objectbased watermarking schemes are needed for copyright protection. This paper proposes a novel blind object watermarking scheme for images and video using the in place lifting shape adaptive-discrete wavelet transform (SA-DWT). In order to make the watermark robust and transparent, the watermark is embedded in the average of wavelet blocks using the visual model based on the human visual system. Wavelet coefficients n least significant bits (LSBs) are adjusted in concert with the average. Simulation results shows that the proposed watermarking scheme is perceptually invisible and robust against many attacks such as lossy image/video compression (e.g. JPEG, JPEG2000 and MPEG-4), scaling, adding noise, filtering, etc.

WDM and OCDMA Systems under MAI Effects: A Comparison Analysis

This paper presents a comparison between Spectrum- Sliced Wavelength Division Multiplexing (SS-WDM) and Spectrum Amplitude Coding Optical Code Division Multiple Access (SAC Optical CDMA) systems for different light sources. The performance of the system is shown in the simulated results of the bit error rate (BER) and the eye diagram of both systems. The comparison results indicate that the Multiple Access Interference (MAI) effects have a significant impact on SS-WDM over SAC Optical CDMA systems. Finally, in terms of spectral efficiency at constant BER of 10-12, SSWDM offers higher spectral efficiency than optical CDMA since no bandwidth expansion in needed.

The Induction of Antioxidant Enzyme Activities in Cabbage Seedlings by Heavy Metal Stress

Cabbage seedlings grown in vitro were exposed to excess levels of heavy metals, including Cd, Mo, and Zn. High metal levels affected plant growth at cotyledonary stage. Seedlings under Cd, Mo, and Zn treatments could not produce root hairs and true leaves. Under stress conditions, seedlings accumulated a higher amount of anthocyanins in their cotyledons than those in the control. The pigments isolated from Cd and Zn stressed seedling cotyledons appeared as pink, while under Mo stress, was dark pink or purple. Moreover, excess Mo stress increased antioxidant enzyme activities of APX, CAT, SOD. These results suggest that, under excess Mo stress, the induced antioxidant enzyme activity of cabbage seedlings may function as a protective mechanism to shield the plants from toxicity and exacerbated growth.

Preliminary Toxicological Evaluations of Polypeptide-K Isolated from Momordica Charantia in Laboratory Rats

This study examined the toxicological effects and safety of polypeptide k isolated from the seeds of Momordica charantia in laboratory rats. 30 male Sprague Dawley rats (12 weeks old, bodyweight 180-200 g) were randomly divided into 3 groups (1000 mg/kg, 500 mg and 0 mg/kg). Rats were acclimatized to laboratory conditions for 7 days and at day 8 rats were dosed orally with polypeptide k (in 2% DMSO/normal saline) and the controls received the dosed vehicle only. Rats were then observed for 72 hours before sacrificed. Rats were anaesthetized by pentobarbital (50 mg/kg ip) and 2-3.0 mL of blood was taken by cardiac puncture and rats were scarified by anaesthetic overdose. Immediately, organs (heart, lungs, liver, kidneys) were weigh and taken for histology. Organ sections were then evaluated by a histopathologist. Serum samples were assayed for liver functions (ALT and γ-GT) and kidney functions (BUN and creatinine). All rats showed normal behavior after the dosing and no statistical changes were observed in all blood parameters and organ weight. Histological examinations revealed normal organ structures. In conclusion, dosing of rats up to 1000 mg/kg did not have any effects on the rat behavior, liver or kidney functions nor histology of the selected organs.

Statistical Distributions of the Lapped Transform Coefficients for Images

Discrete Cosine Transform (DCT) based transform coding is very popular in image, video and speech compression due to its good energy compaction and decorrelating properties. However, at low bit rates, the reconstructed images generally suffer from visually annoying blocking artifacts as a result of coarse quantization. Lapped transform was proposed as an alternative to the DCT with reduced blocking artifacts and increased coding gain. Lapped transforms are popular for their good performance, robustness against oversmoothing and availability of fast implementation algorithms. However, there is no proper study reported in the literature regarding the statistical distributions of block Lapped Orthogonal Transform (LOT) and Lapped Biorthogonal Transform (LBT) coefficients. This study performs two goodness-of-fit tests, the Kolmogorov-Smirnov (KS) test and the 2- test, to determine the distribution that best fits the LOT and LBT coefficients. The experimental results show that the distribution of a majority of the significant AC coefficients can be modeled by the Generalized Gaussian distribution. The knowledge of the statistical distribution of transform coefficients greatly helps in the design of optimal quantizers that may lead to minimum distortion and hence achieve optimal coding efficiency.

A Multipurpose Audio Watermarking Algorithm Based on Vector Quantization in DCT Domain

In this paper, a novel multipurpose audio watermarking algorithm is proposed based on Vector Quantization (VQ) in Discrete Cosine Transform (DCT) domain using the codeword labeling and index-bit constrained method. By using this algorithm, it can fulfill the requirements of both the copyright protection and content integrity authentication at the same time for the multimedia artworks. The robust watermark is embedded in the middle frequency coefficients of the DCT transform during the labeled codeword vector quantization procedure. The fragile watermark is embedded into the indices of the high frequency coefficients of the DCT transform by using the constrained index vector quantization method for the purpose of integrity authentication of the original audio signals. Both the robust and the fragile watermarks can be extracted without the original audio signals, and the simulation results show that our algorithm is effective with regard to the transparency, robustness and the authentication requirements