Olive Leaves Extract Restored the antioxidant Perturbations in Red Blood Cells Hemolysate in Streptozotocin Induced Diabetic Rats

Oxidative stress and overwhelming free radicals associated with diabetes mellitus are likely to be linked with development of certain complication such as retinopathy, nephropathy and neuropathy. Treatment of diabetic subjects with antioxidant may be of advantage in attenuating these complications. Olive leaf (Oleaeuropaea), has been endowed with many beneficial and health promoting properties mostly linked to its antioxidant activity. This study aimed to evaluate the significance of supplementation of Olive leaves extract (OLE) in reducing oxidative stress, hyperglycemia and hyperlipidemia in Sterptozotocin (STZ)- induced diabetic rats. After induction of diabetes, a significant rise in plasma glucose, lipid profiles except High density lipoproteincholestrol (HDLc), malondialdehyde (MDA) and significant decrease of plasma insulin, HDLc and Plasma reduced glutathione GSH as well as alteration in enzymatic antioxidants was observed in all diabetic animals. During treatment of diabetic rats with 0.5g/kg body weight of Olive leaves extract (OLE) the levels of plasma (MDA) ,(GSH), insulin, lipid profiles along with blood glucose and erythrocyte enzymatic antioxidant enzymes were significantly restored to establish values that were not different from normal control rats. Untreated diabetic rats on the other hand demonstrated persistent alterations in the oxidative stress marker (MDA), blood glucose, insulin, lipid profiles and the antioxidant parameters. These results demonstrate that OLE may be of advantage in inhibiting hyperglycemia, hyperlipidemia and oxidative stress induced by diabetes and suggest that administration of OLE may be helpful in the prevention or at least reduced of diabetic complications associated with oxidative stress.




References:
[1] Kamtchouing, P.; Kahpui, S.M.; Djomeni Dzeufiet, P. D.; T-edong, L.;
Asongalem, E. A.; Dimoa, T. Anti-diabetic activity of methanol/
methylene chloride stem bark extracts of Terminalia superba and
Canarium schweinfurthii on streptozotocin-induced diabetic rats. J.
Ethnopharmacol. 2006, 104, 306-309.
[2] Ceriello, A. Oxidative stress and glycemic regulation. Metabolism 2000,
49,27-29.
[3] Gumieniczek, A. Effects of pioglitazone on hyperglycemia-induced
alterations in antioxidative system in tissues of alloxan-treated diabetic
animals. Exp. Toxicol. Pathol. 2005, 56, 321-326.
[4] Chaudhry, J.; Ghosh, N. N.; Roy, K.; Chandra, R. Antihypergly-cemic
effect of a thiazolidinedione analogue and its role in amelior-ating
oxidative stress in alloxan-induced diabetic rats. Life Sci. 2007,80,
1135-1142.
[5] Karaoz, E.; Gultekin, F.; Akdogan, M.; Oncu, M.; Gokcimen,
A.Protective role of melatonin and a combination of vitamin C and
vitamin E on lung toxicity induced by chlorpyrifos-ethyl in rats. Exp.
Toxicol. Pathol. 2002, 54,97-108.
[6] Al-Azzawie,H.;Alhamdani,M. S. S.Hypoglycemic and antioxidant effect
of oleuropein in alloxan-diabetic rabbits. Life Sci. 2006, 78, 1371-
1377.
[7] Bouaziz, M.; Chamkha, M.; Sayadi, S. Comparative study on
phenolic content and antioxidant activity during maturation of the
olive cultivar Chemlali from Tunisia. J. Agric. Food Chem., 2004, 52,
5476-5481.
[8] Allouche, N., Feki, I.; Sayadi, S. Toward a high yield recovery of
antioxidants and purified hydroxytyrosol from olive mill waste waters.
J. Agric. Food Chem., 2004, 52, 267-273.
[9] Jemai, H.; Fki, I.; Bouaziz,M.; Bouallagui, Z.; El Feki,A.; Isoda,H.;
Sayadi, S. Lipid-lowering and antioxidant effects of hydroxytyrosol and
its triacetylated derivative recovered from olive tree leaves in
cholesterol-fed rats. J. Agric. Food Chem. 2008b, 56, 2630-2636.
[10] Briante, R.; Patumi, M.; Terenziani, S.; Bismuto, E.; Febbraio, F.;
Nucci, R. Olea europaea L. leaf extract and derivatives: antioxidant
properties. J. Agric. Food Chem. 2002, 17, 4934-4940.
[11] Amro, B.; Aburjai, T.; Al-Khalil, S. Antioxidative and radical scavenging
effects of olive cake extract. Fitoterapia 2002, 73,456-461.
[12] Visioli, F.; Bellasta, S.; Galli, C. Oleuropein, the bitter principle of
olives, enhances nitric oxide production bymousemacrophages. Life Sci.
1998a, 62, 541-546.
[13] Visioli, F.; Poli, A.; Galli, C. Antioxidant and other biological activities
of phenols from olives and olive oil. Med. Res. Rev. 2002b, 22, 65-75.
[14] Gonzalez, M.; Zarzuelo, A.; Gamez, M. J.; Utrilla, M. P.; Jimenez, J.;
Osuna, I. Hypoglycemic activity of olive leaf. Planta Med. 1992, 58,
513-515.
[15] Waterman, E; Lockwood, B. Active components and clinical implications
of olive oil. Altern. Med. Rev. 2007, 12, 331-42.
[16] Manna, C.;DellaRagione, F.; Cucciola, V.; Borriello,A.;D-Angelo, S.;
Galletti, P.; Zappia, V. Biological effects of hydroxytyrosol, a
polyphenol from olive oil endowed with antioxidant activity. Adv. Exp.
Med. Biol. 1999, 472,115-130.
[17] Fragopoulou, E.; Nomikos, T.; Karantonis, H C.; Apostolakis, C.;
Pliakis, E.; Samiotaki, M.; Panayotou, G.; Antonopoulou, S. Biological
activity of acetylated phenolic compounds. J. Agric. Food Chem. 2007,
55,80-89.
[18] Visioli, F.; Bellomo, G.; Galli, C. Free radical-scavenging properties of
olive oil polyphenols. Biochem. Biophys. Res. Commun. 1998b, 247,
60-64.
[19] Carrasco-Pancorbo, A.; Cerretani, L.; Bendini, A.; Segura-Carretero, A.;
Del Carlo, M.; Gallina-Toschi, T.; Lercker, G.; Compagnone, D.;
Fernndez-Gutirrez, A. Evaluation of the antioxidant capacity of
individual phenolic compounds in virgin olive oil. J. Agric. Food Chem.
2005, 53, 8918-8925.
[20] Visioli, F., Caruso, D., Galli, C., Viappiani, S., Galli, G., Sala, A., 2000.
Olive oils rich in natural catecholic phenols decrease isoprostane
excretion in humans. Biochemical and Biophysical Research
Communications. 278, 797- 799.
[21] Eidi, A.; Eidi, M.; and Darzi, R. 2009; Antidiabetic effects of olea
europaea L. in normal and diabetic rats . Phytother. Res. 23: 347-350.
[22] NIH, National Institute of Health. Guide for the care and use of
laboratory animal. Public health service, NIH publication no. 1985; 86-
23, Bethesda, MD.
[23] El-Seifi, S.; Abdel- Moneim, A. and Badir, N. (1993): The effect of
Ambrosia maritima and Cleome droserfolia on serum insulin and
glucose concentrations in diabetic rats. J. Egypt. Ger. Soc. Zool., 12(A):
305-328.
[24] Placer ZA, Crushman L and Son BC. Estimation of product of lipid
peroxidation (malondialdehyde) in biochemical system. Anal. Biochem.
1966; 16: 359-364.
[25] Sedlack J and Lindsay RH. Estimation of total protein bound and non
protein sulfhydryl groups in tissues with Ellman reagent. Anal.
Biochem. 1968; 86: 271-278.
[26] Kaplan, L.A. (1984): Glucose. Clin Chem The C. V. Mosby Co.St
Louis. Toronto. Princeton, 1032-1036. Cited in Diamond Pamphlet.
[27] Marschner, I.; Bottermann, P.; Erhardt, F.; Linke, R.; Maier, V.;
Schwandt, P.; Vogt, W. and Scriba, P. C. (1974): Group experiments on
the radioimmunological insulin determination. Horm. Metab. Res., 6:
293-296.
[28] Fossati, P. and Prencipe, L. (1982): Serum triglycerides determined
colourimetrically with an enzyme that produces hydrogen peroxide.
Clin. Chem., 28(1): 2077-2080.
[29] Deeg, R. and Ziegenohrm (1983): Kinetic enzymatic method for
automated determination of total cholesterol in serum. J. Clin. Chem.,
29(10): 1798-1802.
[30] Friendewald, W. T. (1972): Estimation of the concentration of lowdensity
lipoprotein cholesterol in plasma without use of the preparative
ultracentrifuge. Clin. Chem., 18: 499-502.
[31] Burstein, M.; Selvenick, H. R. and Morfin, R. (1970): Rapid method for
the isolation of lipoproteins from human serum by precipitation with
polyanions. J. Lipid Res., 11: 583-595.
[32] Martin Mateo MC, Martin B, Santos Beneit M, Rabadan J. Catalase
activity in erythrocytes from colon and gastric cancer patients. Influence
of nickel, lead, mercury, and cadmium. Biol Trace Elem Res. 1997 Apr;
57(1): 79-90 .
[33] Chiu, D.; Fredrick, H. and Tappel, A. L (1976): Purification and
properties of rat lung soluble glutathione peroxidase. Biochemica .et
Biophysica. Acta., 445: 558-566.
[34] Sinha K A. Calorimetric assay of catalase. Anal. Biochem. 1971;
47:389-394.
[35] Misra H P and Fridovich I. The Role of Superoxide Anion in the Autooxidation
of Epinephrine and a Simple Assay for Superoxide Dismutase.
J. Biol. Chem. 1972; 247(12) : 3170-3175.
[36] Baynes, J. W. Role of oxidative stress in development of complications
in diabetes. Diabetes 1991, 40, 405-412.
[37] Hamden, K.; Carreau, S.; Boujbiha, M. A.; Lajmi, S.; Aloulou, D.;
Kchaou, D.; El feki, A. Hyperglycaemia, stress oxidant, liver
dysfunction and histological changes in diabetic male rat pancreas and
liver: Protective effect of 17 β- estradiol. Steroids 2008, 73, 495-501.
[38] Duzguner, V.; Kaya, S. Effect of zinc on the lipid peroxidation and the
antioxidant defense systems of the alloxan-induced diabetic rabbits.
Free Radical Biol. Med. 2007, 42, 1481-1486.
[39] Lei, J.; Hong-Yu, X.; Li-Ji, J.; Shu-Ying, L. and Yong-Ping, X. (2008):
Antioxidant and pancreas-protective effect of aucubin on rats with
streptozotocin-induced diabetes. Eur. J.of Pharmacol., 582: 162-167.
[40] Lyons, T.J., 1991. Oxidized low density lipoproteins: a role in the
pathogenesis of atherosclerosis in diabetes? Diabetic Medicine 8, 411 -
419.
[41] MacRury, S.M.; Gordon, D.; Wilson, R.; Bradley, H.; Gemmell, C.G.;
Paterson, J.R.; Rumley, A.G. and MacCuish, A.C. (1993): A
comparison of different methods of assessing free radical activity in
type 2 diabetes and peripheral vascular disease. Diabet. Med., 10: 331-
335.
[42] Ghiselli, A.; Laurenti, O.; De Mattia, G.; Maiani, G. and Ferro Luzzi, A.
(1992): Salicylate hydroxylation as an early marker of in vivo oxidative
stress in diabetic patients. Free Radic. Biol. and Med., 13: 621-626.
[43] Zoppini, G.; Targher, G.; Monauni, T.; Faccini, G.; Pasqualini, E.;
Martinelli, C.; Zenari, M.L. and Muggeo, M. (1996): Increase in
circulating products of lipid peroxidation in smokers with IDDM.
Diabetes Care., 19: 1233-1236.
[44] Haffner, S.M.; Agil, A.; Mykkanen, L.; Stern, M.P. and Jialal, I. (1995):
Plasma oxidizability in subjects with normal glucose tolerance, impaired
glucose tolerance, and NIDDM. Diabetes.
[45] Mustafa, A. and David, E. Laaksonen. (2002): Diabetes, Oxidative
stress and Physical exercise. J.of Sports Sci. and Med., 1: 1-14.
[46] Bouaziz, M.; Sayadi, S. Isolation and evaluation of antioxidants from
leaves of a Tunisian cultivar olive tree. Eur. J. Lipid Sci. Technol. 2005,
107,118-125.
[47] Jemai H, El Feki A and Sayadi S. Antidiabetic and antioxidant effects of
hydroxytyrosol and oleuropein from olive leaves in alloxan-diabetic rats.
J. Agric. Food Chem. 2009; 57: 8798 -8804.
[48] Dragana D, Slavica R, Nevena V. R, Nataša D . P, Aleksandar D and
Dušan M. M. Olive leaf extract modulates cold restraint stress-induced
oxidative changes in rat liver J. Serb. Chem. Soc. 2011; 76 (9) 1207-
1218.
[49] El-Damrawy, S. Z Alleviate the oxidative stress in aged rabbit bucks by
using olive leave extract egypt. poult. sci. vol (31) (iv): (737-744), 2011.
[50] Vina, J.; Borras, C.; Gomez-Cabrera, M. C.; Orr, W. C. Role of reactive
oxygen species and (phyto)oestrogens in the modulation of adaptive
response to stress. Free Radical Res. 2006, 40,111-119.
[51] Lee, O.H.; Lee, B.Y. ; Lee, J.; Lee, H.B; Son, J.Y.; Park, C.S.; Shetty,
K and Kim, Y.C. 2009. Assessment of phenolics-enriched extract and
fractions of olive leaves and their antioxidant activities. Bioresour .
Technol. 100: 6107-6113.
[52] Lee, O.H.; and Lee, B.Y. 2010.Antioxidant and antimicrobial
activities of combined phenolics in olea europaea leaf extract.
Bioresour .Technol. 101: 3751-3754
[53] Masella, R., Vari, R., D-Archivio, M., Di Benedetto, R., Matarrese, P.,
Malorni, W., Scazzocchio, B., Giovannini, C., 2004. Extra virgin olive
oil biophenols inhibit cell-mediated oxidation of LDL by increasing the
mRNA transcription of glutathione-related enzymes. Journal of
Nutrition 134, 785- 791.
[54] Madar, Z., Maayan, N., Sarit, O., Eliraz, A., 2004. Antioxidants
modulate the nitric oxide system and SOD activity and expression in rat
epithelial lung cells. Asia Pacific Journal of Clinical Nutrition 13, S101.
[55] Andrikopoulos, N.K., Kaliora, A.C., Assimopoulou, A.N.,
Papageorgiou, V.P.,2002. Inhibitory activity of minor polyphenolic and
nonpolyphenolic constituents of olive oil against in vitro low-density
lipoprotein oxidation. Journal of Medicinal Food 5, 1 -7.
[56] de la Puerta, R., Ruiz Gutierrez, V., Hoult, J.R., 1999. Inhibition of
leukocyte 5-lipoxygenase by phenolics from virgin olive oil.
Biochemical Pharmacology 57, 445- 449.
[57] Sajad, H. M.; Abdul, B.; Bhagat, R.C.; Darzi, M.M. and Abdul, W. S.
(2008): Biochemical and Histomorphological Study of Streptozotocin-
Induced Diabetes Mellitus in Rabbits. Pakistan J.of Nutr., 7 (2): 359-
364.
[58] Suryawanshi, N.P. ; Bhutey, A.K. ; Nagdeote, A.N. ; Jadhav, A.A. and
Manoorkar, G.S. (2006): Study Of Lipid Peroxide And Lipid Profile In
Diabetes Mellitus. Indian J. of Clin. Biochem., 21: (1) 126-130.
[59] Jouad, H.; Haloui, M.; Rhiouani, H.; El Hilaly, J.; Eddouks, M.
Ethnobotanical survey of medicinal plants used for the treatment of
diabetes, cardiac and renal diseases in the North Center Region of
Morocco (fez-Boulemane). J. Ethnopharmacol. 2001, 77, 175-182.
[60] Eriko K, Shinya Y, Isafumi M, Mitsuhiro K, Kazuaki K, Yasuhiro O
and Yoji T. Identification of Anti-╬▒-Amylase Components from Olive
Leaf Extracts Food Science and Technology Research2003; Vol. 9 , No.
1 pp.35-39.
[61] Fki, I.; Sahnoun, Z.; Sayadi, S. Hypocholesterolemic effects of phenolic
extracts and purified hydroxytyrosol recovered from olive mill
wastewater in rats fed a cholesterol-rich diet. J. Agric. Food Chem.
2007, 55, 624-631.
[62] Prince, P. S. M; Menon, V. P.; Gunasekaran, G. Hypolipidemic action
of Tinospora cardifolia roots in alloxan diabetic rats. J. Ethnopharmacol.
1999, 64,53-57.
[63] Somova, L. I.; Shode, F. O.; Ramnanan, P.; Nadar, A. Antihypertensive,
antiatherosclerotic and antioxidant activity of triterpenoids isolated from
Olea europaea, subspecies africana leaves. J. Ethnopharmacol. 2003, 84,
299-305.
[64] Omar, S. (2010). Cardioprotective and neuroprotective roles of
oleuropein in olive. Saudi Pharmaceutical J., 5: 1-11
[65] Coni, E.; Bendetto, R.; pasquale, M ;.Masella, R.; Modesti, D.;
Mattei ,R.; and Carlini, E.A. 2000. Rotective effect of oleuropein an
olive oil biophenol, on low densitylipoprotein oxidizability in rabbits.
Lipids 35: 45-54.
[66] Andreadou, I.; Iliodromitis, E.K.; Mikros E.; Constantinou, M.;
Kakoulidou ,A.; and Kremastinos, D.T. 2006. The olive constituent
oleuropein exhibits anti-ischemic, antioxidative and hypolipidemic
effects in anesthetized rabbits. J. Nutr. 136 .2219-2213 .
[67] Visioli, F.; Galli, C.; Galli, G.; Caruso, D. 2002 a .Biological activities
and metabolic fate of olive oil phenols. Eur . J. Lipid Sci. Technol. 104:
677-684 .
[68] Komeili GH, Miri Moghaddam E., Effect of Aqueous Extract of Olive
Leaf on Serum Glucose and Lipids in Diabetic Rats Iranian Journal of
Endocrinology and Metabolism, 2008; 10 (4) :389-394
[69] Bursill, C. A.; Roach, P. D. Modulation of cholesterol metabolism by
the green tea polyphenol ( )-epigallocatechin gallate in cultured human
liver (HepG2) cells. J. Agric. Food Chem. 2006, 54, 1621-1626.
[70] Krzeminski, R.; Gorinstein, S.; Leontowicz, H.; Leontowicz, M.;
Gralak, M.; Czerwinski, J.; Lojek, A.; Ciz, M.; Martin-Belloso, O.;
Gligelmo-Miguel, N.; Trakhtenberg, S. Effect of different olive oils on
bile excretion in rats fed cholesterol-containing and cholesterol-free
diets. J. Agric. Food Chem. 2003, 51, 5774-5779.
[71] Vinson, J. A.; Liang, X. Q.; Proch, J.; Hontz, B. A.; Dancel, J.;
Sandone, N. Polyphenol antioxidants in citrus juices: in vitro and in
vivo studies relevant to heart disease. Flavonoids in cell function. Ad .
Exp. Med. Biol. 2002, 505, 113-122.