DAMQ-Based Approach for Efficiently Using the Buffer Spaces of a NoC Router

In this paper we present high performance dynamically allocated multi-queue (DAMQ) buffer schemes for fault tolerance systems on chip applications that require an interconnection network. Two virtual channels shared the same buffer space. Fault tolerant mechanisms for interconnection networks are becoming a critical design issue for large massively parallel computers. It is also important to high performance SoCs as the system complexity keeps increasing rapidly. On the message switching layer, we make improvement to boost system performance when there are faults involved in the components communication. The proposed scheme is when a node or a physical channel is deemed as faulty, the previous hop node will terminate the buffer occupancy of messages destined to the failed link. The buffer usage decisions are made at switching layer without interactions with higher abstract layer, thus buffer space will be released to messages destined to other healthy nodes quickly. Therefore, the buffer space will be efficiently used in case fault occurs at some nodes.

Creating or Destroying Objects Plan in the Graphplan Framework

At present, intelligent planning in the Graphplan framework is a focus of artificial intelligence. While the Creating or Destroying Objects Planning (CDOP) is one unsolved problem of this field, one of the difficulties, too. In this paper, we study this planning problem and bring forward the idea of transforming objects to propositions, based on which we offer an algorithm, Creating or Destroying Objects in the Graphplan framework (CDOGP). Compared to Graphplan, the new algorithm can solve not only the entire problems that Graphplan do, but also a part of CDOP. It is for the first time that we introduce the idea of object-proposition, and we emphasize the discussion on the representations of creating or destroying objects operator and an algorithm in the Graphplan framework. In addition, we analyze the complexity of this algorithm.

Evaluating and Selecting Optimization Software Packages: A Framework for Business Applications

Owing the fact that optimization of business process is a crucial requirement to navigate, survive and even thrive in today-s volatile business environment, this paper presents a framework for selecting a best-fit optimization package for solving complex business problems. Complexity level of the problem and/or using incorrect optimization software can lead to biased solutions of the optimization problem. Accordingly, the proposed framework identifies a number of relevant factors (e.g. decision variables, objective functions, and modeling approach) to be considered during the evaluation and selection process. Application domain, problem specifications, and available accredited optimization approaches are also to be regarded. A recommendation of one or two optimization software is the output of the framework which is believed to provide the best results of the underlying problem. In addition to a set of guidelines and recommendations on how managers can conduct an effective optimization exercise is discussed.

Mouse Pointer Tracking with Eyes

In this article, we expose our research work in Human-machine Interaction. The research consists in manipulating the workspace by eyes. We present some of our results, in particular the detection of eyes and the mouse actions recognition. Indeed, the handicaped user becomes able to interact with the machine in a more intuitive way in diverse applications and contexts. To test our application we have chooses to work in real time on videos captured by a camera placed in front of the user.

mCRM-s New Opportunities of Customer Satisfaction

This paper aims at a new challenge of customer satisfaction on mobile customer relationship management. In this paper presents a conceptualization of mCRM on its unique characteristics of customer satisfaction. Also, this paper develops an empirical framework in conception of customer satisfaction in mCRM. A single-case study is applied as the methodology. In order to gain an overall view of the empirical case, this paper accesses to invisible and important information of company in this investigation. Interview is the key data source form the main informants of the company through which the issues are identified and the proposed framework is built. It supports the development of customer satisfaction in mCRM; links this theoretical framework into practice; and provides the direction for future research. Therefore, this paper is very useful for the industries as it helps them to understand how customer satisfaction changes the mCRM structure and increase the business competitive advantage. Finally, this paper provides a contribution in practice by linking a theoretical framework in conception of customer satisfaction in mCRM for companies to a practical real case.

Thermal Analysis of Tibetan Vernacular Building - Case of Lhasa

Vernacular building is considered as sustainable in energy consumption and environment and its thermal performance is more and more concerned by researchers. This paper investigates the thermal property of the vernacular building in Lhasa by theoretical analysis on the aspects of building form, envelope and materials etc. The values of thermal resistance and thermal capacity of the envelope are calculated and compared with the current China building code and modern building case. And it is concluded that Lhasa vernacular building meets the current China building code of thermal standards and have better performance in some aspects, which is achieved by various passive means with close response to local climate conditions.

GeNS: a Biological Data Integration Platform

The scientific achievements coming from molecular biology depend greatly on the capability of computational applications to analyze the laboratorial results. A comprehensive analysis of an experiment requires typically the simultaneous study of the obtained dataset with data that is available in several distinct public databases. Nevertheless, developing a centralized access to these distributed databases rises up a set of challenges such as: what is the best integration strategy, how to solve nomenclature clashes, how to solve database overlapping data and how to deal with huge datasets. In this paper we present GeNS, a system that uses a simple and yet innovative approach to address several biological data integration issues. Compared with existing systems, the main advantages of GeNS are related to its maintenance simplicity and to its coverage and scalability, in terms of number of supported databases and data types. To support our claims we present the current use of GeNS in two concrete applications. GeNS currently contains more than 140 million of biological relations and it can be publicly downloaded or remotely access through SOAP web services.

Heuristic Continuous-time Associative Memories

In this paper, a novel associative memory model will be proposed and applied to memory retrievals based on the conventional continuous time model. The conventional model presents memory capacity is very low and retrieval process easily converges to an equilibrium state which is very different from the stored patterns. Genetic Algorithms is well-known with the capability of global optimal search escaping local optimum on progress to reach a global optimum. Based on the well-known idea of Genetic Algorithms, this work proposes a heuristic rule to make a mutation when the state of the network is trapped in a spurious memory. The proposal heuristic associative memory show the stored capacity does not depend on the number of stored patterns and the retrieval ability is up to ~ 1.

A Reproduction of Boundary Conditions in Three-Dimensional Continuous Casting Problem

The paper discusses a 3D numerical solution of the inverse boundary problem for a continuous casting process of alloy. The main goal of the analysis presented within the paper was to estimate heat fluxes along the external surface of the ingot. The verified information on these fluxes was crucial for a good design of a mould, effective cooling system and generally the whole caster. In the study an enthalpy-porosity technique implemented in Fluent package was used for modeling the solidification process. In this method, the phase change interface was determined on the basis of the liquid fraction approach. In inverse procedure the sensitivity analysis was applied for retrieving boundary conditions. A comparison of the measured and retrieved values showed a high accuracy of the computations. Additionally, the influence of the accuracy of measurements on the estimated heat fluxes was also investigated.

Promoting Electric Vehicles for Sustainable Urban Transport: How to Do It This Time Right

In recent years various types of electric vehicles has gained again increasing attention as an environmentally benign technology in transport. Especially for urban areas with high local pollution this Zero-emission technology (at the point of use) is considered to provide proper solutions. Yet, the bad economics and the limited driving ranges are still major barriers for a broader market penetration of battery electric vehicles (BEV) and of fuel cell vehicles (FCV). The major result of our analyses is that the most important precondition for a further dissemination of BEV in urban areas are emission-free zones. This is an instrument which allows the promotion of BEV without providing excessive subsidies. In addition, it is important to note that the full benefits of EV can only be harvested if the electricity used is produced from renewable energy sources. That is to say, it has to be ensured that the use of BEV in urban areas is clearly linked to a green electricity purchase model. And moreover, the introduction of a CO2- emission-based tax system would support this requirement.

Incentives to Introduce Environmental Management System in the Context of Building an eco-Innovative Potential – A Case of Podkarpackie Voivodeship

This paper shows the results of empirical research. It presents experiences of Polish companies from the Podkarpackie voivodeship connected with implementing EMS according to the requirements of the ISO 14001 international standard. The incentives to introduce and certify organizational eco-innovation, which formal EMSs are treated as, are presented in this paper.

Phase Equilibrium in Aqueous Two-phase Systems Containing Poly (propylene glycol) and Sodium Citrate at Different pH

The phase diagrams and compositions of coexisting phases have been determined for aqueous two-phase systems containing poly(propylene glycol) with average molecular weight of 425 and sodium citrate at various pH of 3.93, 4.44, 4.6, 4.97, 5.1, 8.22. The effect of pH on the salting-out effect of poly (propylene glycol) by sodium citrate has been studied. It was found that, an increasing in pH caused the expansion of two-phase region. Increasing pH also increases the concentration of PPG in the PPGrich phase, while the salt-rich phase will be somewhat mole diluted.

Combining Molecular Statics with Heat Transfer Finite Difference Method for Analysis of Nanoscale Orthogonal Cutting of Single-Crystal Silicon Temperature Field

This paper uses quasi-steady molecular statics model and diamond tool to carry out simulation temperature rise of nanoscale orthogonal cutting single-crystal silicon. It further qualitatively analyzes temperature field of silicon workpiece without considering heat transfer and considering heat transfer. This paper supposes that the temperature rise of workpiece is mainly caused by two heat sources: plastic deformation heat and friction heat. Then, this paper develops a theoretical model about production of the plastic deformation heat and friction heat during nanoscale orthogonal cutting. After the increased temperature produced by these two heat sources are added up, the acquired total temperature rise at each atom of the workpiece is substituted in heat transfer finite difference equation to carry out heat transfer and calculates the temperature field in each step and makes related analysis.

Educational Robotics Constructivism and Modeling of Robots using Reverse Engineering

The project describes the modeling of various architectures mechatronics specifically morphologies of robots in an educational environment. Each structure developed by students of pre-school, primary and secondary was created using the concept of reverse engineering in a constructivist environment, to later be integrated in educational software that promotes the teaching of educational Robotics in a virtual and economic environment.

A Study of Feedback Strategy to Improve Inspector Performance by Using Computer Based Training

The purpose of this research was to study the inspector performance by using computer based training (CBT). Visual inspection task was printed circuit board (PCB) simulated on several types of defects. Subjects were 16 undergraduate randomly selected from King Mongkut-s University of Technology Thonburi and test for 20/20. Then, they were equally divided on performance into two groups (control and treatment groups) and were provided information before running the experiment. Only treatment group was provided feedback information after first experiment. Results revealed that treatment group was showed significantly difference at the level of 0.01. The treatment group showed high percentage on defects detected. Moreover, the attitude of inspectors on using the CBT to inspection was showed on good. These results have been showed that CBT could be used for training to improve inspector performance.

Shift Invariant Support Vector Machines Face Recognition System

In this paper, we present a new method for incorporating global shift invariance in support vector machines. Unlike other approaches which incorporate a feature extraction stage, we first scale the image and then classify it by using the modified support vector machines classifier. Shift invariance is achieved by replacing dot products between patterns used by the SVM classifier with the maximum cross-correlation value between them. Unlike the normal approach, in which the patterns are treated as vectors, in our approach the patterns are treated as matrices (or images). Crosscorrelation is computed by using computationally efficient techniques such as the fast Fourier transform. The method has been tested on the ORL face database. The tests indicate that this method can improve the recognition rate of an SVM classifier.

Numerical Simulation of a Conventional Heat Pipe

The steady incompressible flow has been solved in cylindrical coordinates in both vapour region and wick structure. The governing equations in vapour region are continuity, Navier-Stokes and energy equations. These equations have been solved using SIMPLE algorithm. For study of parameters variation on heat pipe operation, a benchmark has been chosen and the effect of changing one parameter has been analyzed when the others have been fixed.

Agent-Based Simulation and Analysis of Network-Centric Air Defense Missile Systems

Network-Centric Air Defense Missile Systems (NCADMS) represents the superior development of the air defense missile systems and has been regarded as one of the major research issues in military domain at present. Due to lack of knowledge and experience on NCADMS, modeling and simulation becomes an effective approach to perform operational analysis, compared with those equation based ones. However, the complex dynamic interactions among entities and flexible architectures of NCADMS put forward new requirements and challenges to the simulation framework and models. ABS (Agent-Based Simulations) explicitly addresses modeling behaviors of heterogeneous individuals. Agents have capability to sense and understand things, make decisions, and act on the environment. They can also cooperate with others dynamically to perform the tasks assigned to them. ABS proves an effective approach to explore the new operational characteristics emerging in NCADMS. In this paper, based on the analysis of network-centric architecture and new cooperative engagement strategies for NCADMS, an agent-based simulation framework by expanding the simulation framework in the so-called System Effectiveness Analysis Simulation (SEAS) was designed. The simulation framework specifies components, relationships and interactions between them, the structure and behavior rules of an agent in NCADMS. Based on scenario simulations, information and decision superiority and operational advantages in NCADMS were analyzed; meanwhile some suggestions were provided for its future development.

Context Modeling and Reasoning Approach in Context-Aware Middleware for URC System

To realize the vision of ubiquitous computing, it is important to develop a context-aware infrastructure which can help ubiquitous agents, services, and devices become aware of their contexts because such computational entities need to adapt themselves to changing situations. A context-aware infrastructure manages the context model representing contextual information and provides appropriate information. In this paper, we introduce Context-Aware Middleware for URC System (hereafter CAMUS) as a context-aware infrastructure for a network-based intelligent robot system and discuss the ontology-based context modeling and reasoning approach which is used in that infrastructure.

New Hybrid Algorithm for Task Scheduling in Grid Computing to Decrease missed Task

The purpose of Grid computing is to utilize computational power of idle resources which are distributed in different areas. Given the grid dynamism and its decentralize resources, there is a need for an efficient scheduler for scheduling applications. Since task scheduling includes in the NP-hard problems various researches have focused on invented algorithms especially the genetic ones. But since genetic is an inherent algorithm which searches the problem space globally and does not have the efficiency required for local searching, therefore, its combination with local searching algorithms can compensate for this shortcomings. The aim of this paper is to combine the genetic algorithm and GELS (GAGELS) as a method to solve scheduling problem by which simultaneously pay attention to two factors of time and number of missed tasks. Results show that the proposed algorithm can decrease makespan while minimizing the number of missed tasks compared with the traditional methods.