Simultaneous Tuning of Static Var Compensator and Power System Stabilizer Employing Real- Coded Genetic Algorithm

Power system stability enhancement by simultaneous tuning of a Power System Stabilizer (PSS) and a Static Var Compensator (SVC)-based controller is thoroughly investigated in this paper. The coordination among the proposed damping stabilizers and the SVC internal voltage regulators has also been taken into consideration. The design problem is formulated as an optimization problem with a time-domain simulation-based objective function and Real-Coded Genetic Algorithm (RCGA) is employed to search for optimal controller parameters. The proposed stabilizers are tested on a weakly connected power system with different disturbances and loading conditions. The nonlinear simulation results are presented to show the effectiveness and robustness of the proposed control schemes over a wide range of loading conditions and disturbances. Further, the proposed design approach is found to be robust and improves stability effectively even under small disturbance and unbalanced fault conditions.

The Innovation of English Materials to Communicate the Identity of Bangpoo, Samut Prakan Province, for Ecotourism

The main purpose of this research was to study how to communicate the identity of the Bangpoo, Samu tPrakan province for ecotourism. The qualitative data was collected through studying related materials, exploring the area, in-depth interviews with three groups of people: three directly responsible officers who were key informants of the district, twenty foreign tourists and five Thai tourist guides. A content analysis was used to analyze the qualitative data. The two main findings of the study were as follows: The identity of Bangpoo, Samut Prakan province. This establishment was near the Mouth of the Gulf of Thailand for normal people and tourists, consisting of rest accommodations. There are restaurants where food and drinks are served, rich mangrove forests, Banpoo seaside resort and mangrove trees. Bangpoo seaside resort is characterized by muddy beacheswhere the greatest number of seagulls can be seen from March to May each year. The communication of the identity of Bangpoo, Samut Prakan province which the researcher could find and design to present in English materials can be summed up in 3 items: 1) The history of Bangpoo, Samut Prakan province 2) The Learning center of Ecotourism: Seagulls and Mangrove forest 3) How to keep Banpoo, Samut Prakran province for ecotourism.

Key Exchange Protocol over Insecure Channel

Key management represents a major and the most sensitive part of cryptographic systems. It includes key generation, key distribution, key storage, and key deletion. It is also considered the hardest part of cryptography. Designing secure cryptographic algorithms is hard, and keeping the keys secret is much harder. Cryptanalysts usually attack both symmetric and public key cryptosystems through their key management. We introduce a protocol to exchange cipher keys over insecure communication channel. This protocol is based on public key cryptosystem, especially elliptic curve cryptosystem. Meanwhile, it tests the cipher keys and selects only the good keys and rejects the weak one.

Artificial Neural Network based Parameter Estimation and Design Optimization of Loop Antenna

Artificial Neural Network (ANN)s are best suited for prediction and optimization problems. Trained ANNs have found wide spread acceptance in several antenna design systems. Four parameters namely antenna radiation resistance, loss resistance, efficiency, and inductance can be used to design an antenna layout though there are several other parameters available. An ANN can be trained to provide the best and worst case precisions of an antenna design problem defined by these four parameters. This work describes the use of an ANN to generate the four mentioned parameters for a loop antenna for the specified frequency range. It also provides insights to the prediction of best and worst-case design problems observed in applications and thereby formulate a model for physical layout design of a loop antenna.

Induction Motor Speed Control Using Fuzzy Logic Controller

Because of the low maintenance and robustness induction motors have many applications in the industries. The speed control of induction motor is more important to achieve maximum torque and efficiency. Various speed control techniques like, Direct Torque Control, Sensorless Vector Control and Field Oriented Control are discussed in this paper. Soft computing technique – Fuzzy logic is applied in this paper for the speed control of induction motor to achieve maximum torque with minimum loss. The fuzzy logic controller is implemented using the Field Oriented Control technique as it provides better control of motor torque with high dynamic performance. The motor model is designed and membership functions are chosen according to the parameters of the motor model. The simulated design is tested using various tool boxes in MATLAB. The result concludes that the efficiency and reliability of the proposed speed controller is good.

Improvement of Blood Detection Accuracy using Image Processing Techniques suitable for Capsule Endoscopy

Bleeding in the digestive duct is an important diagnostic parameter for patients. Blood in the endoscopic image can be determined by investigating the color tone of blood due to the degree of oxygenation, under- or over- illumination, food debris and secretions, etc. However, we found that how to pre-process raw images obtained from the capsule detectors was very important. We applied various image process methods suitable for the capsule endoscopic image in order to remove noises and unbalanced sensitivities for the image pixels. The results showed that much improvement was achieved by additional pre-processing techniques on the algorithm of determining bleeding areas.

Machine Learning Techniques for Short-Term Rain Forecasting System in the Northeastern Part of Thailand

This paper presents the methodology from machine learning approaches for short-term rain forecasting system. Decision Tree, Artificial Neural Network (ANN), and Support Vector Machine (SVM) were applied to develop classification and prediction models for rainfall forecasts. The goals of this presentation are to demonstrate (1) how feature selection can be used to identify the relationships between rainfall occurrences and other weather conditions and (2) what models can be developed and deployed for predicting the accurate rainfall estimates to support the decisions to launch the cloud seeding operations in the northeastern part of Thailand. Datasets collected during 2004-2006 from the Chalermprakiat Royal Rain Making Research Center at Hua Hin, Prachuap Khiri khan, the Chalermprakiat Royal Rain Making Research Center at Pimai, Nakhon Ratchasima and Thai Meteorological Department (TMD). A total of 179 records with 57 features was merged and matched by unique date. There are three main parts in this work. Firstly, a decision tree induction algorithm (C4.5) was used to classify the rain status into either rain or no-rain. The overall accuracy of classification tree achieves 94.41% with the five-fold cross validation. The C4.5 algorithm was also used to classify the rain amount into three classes as no-rain (0-0.1 mm.), few-rain (0.1- 10 mm.), and moderate-rain (>10 mm.) and the overall accuracy of classification tree achieves 62.57%. Secondly, an ANN was applied to predict the rainfall amount and the root mean square error (RMSE) were used to measure the training and testing errors of the ANN. It is found that the ANN yields a lower RMSE at 0.171 for daily rainfall estimates, when compared to next-day and next-2-day estimation. Thirdly, the ANN and SVM techniques were also used to classify the rain amount into three classes as no-rain, few-rain, and moderate-rain as above. The results achieved in 68.15% and 69.10% of overall accuracy of same-day prediction for the ANN and SVM models, respectively. The obtained results illustrated the comparison of the predictive power of different methods for rainfall estimation.

Flow Visualization and Characterization of an Artery Model with Stenosis

Cardiovascular diseases, principally atherosclerosis, are responsible for 30% of world deaths. Atherosclerosis is due to the formation of plaque. The fatty plaque may be at risk of rupture, leading typically to stroke and heart attack. The plaque is usually associated with a high degree of lumen reduction, called a stenosis.It is increasingly recognized that the initiation and progression of disease and the occurrence of clinical events is a complex interplay between the local biomechanical environment and the local vascular biology. The aim of this study is to investigate the flow behavior through a stenosed artery. A physical experiment was performed using an artery model and blood analogue fluid. An axisymmetric model constructed consists of contraction and expansion region that follow a mathematical form of cosine function. A 30% diameter reduction was used in this study. The flow field was measured using particle image velocimetry (PIV). Spherical particles with 20μm diameter were seeded in a water-glycerol-NaCl mixture. Steady flow Reynolds numbers are 250. The area of interest is the region after the stenosis where the flow separation occurs. The velocity field was measured and the velocity gradient was investigated. There was high particle concentration in the recirculation zone. High velocity gradient formed immediately after the stenosis throat created a lift force that enhanced particle migration to the flow separation area.

Effects of Drought on Yield and Some Yield Components of Chickpea

This research was conducted to determine responses of chickpeas to drought in different periods (early period, late period, no-irrigation, two times irrigation as control). The trial was made in “Randomized Complete Block Design" with three replications on 2010 and 2011 years in Konya-Turkey. Genotypes were consisted from 7 lines of ICARDA, 2 certified lines and 1 local population. The results showed that; as means of years and genotypes, early period stress showed highest (207.47 kg da-1) seed yield and it was followed by control (202.33 kg da-1), late period (144.64 kg da-1) and normal (106.93 kg da-1) stress applications. The genotypes were affected too much by drought and, the lowest seed was taken from non-irrigated plots. As the means of years and stress applications, the highest (196.01 kg da-1) yield was taken from genotype 22255. The reason of yield variation could be derived from different responses of genotypes to drought.

The More Organized Proof For Acyclic Coloring Of Graphs With Δ = 5 with 8 Colors

An acyclic coloring of a graph G is a coloring of its vertices such that:(i) no two neighbors in G are assigned the same color and (ii) no bicolored cycle can exist in G. The acyclic chromatic number of G is the least number of colors necessary to acyclically color G. Recently it has been proved that any graph of maximum degree 5 has an acyclic chromatic number at most 8. In this paper we present another proof for this result.

Verification of a Locked CFD Approach to Cool Down Modeling

Increasing demand on the performance of Subsea Production Systems (SPS) suggests a need for more detailed investigation of fluid behavior taking place in subsea equipment. Complete CFD cool down analyses of subsea equipment are very time demanding. The objective of this paper is to investigate a Locked CFD approach, which enables significant reduction of the computational time and at the same time maintains sufficient accuracy during thermal cool down simulations. The result comparison of a dead leg simulation using the Full CFD and the three LCFD-methods confirms the validity of the locked flow field assumption for the selected case. For the tested case the LCFD simulation speed up by factor of 200 results in the absolute thermal error of 0.5 °C (3% relative error), speed up by factor of 10 keeps the LCFD results within 0.1 °C (0.5 % relative error) comparing to the Full CFD.

Temperature-Dependence of Hardness and Wear Resistance of Stellite Alloys

A group of Stellite alloys are studied in consideration of temperature effects on their hardness and wear resistance. The hardness test is conducted on a micro-hardness tester with a hot stage equipped that allows heating the specimen up to 650°C. The wear resistance of each alloy is evaluated using a pin-on-disc tribometer with a heating furnace built-in that provides the temperature capacity up to 450°C. The experimental results demonstrate that the hardness and wear resistance of Stellite alloys behave differently at room temperature and at high temperatures. The wear resistance of Stellite alloys at room temperature mainly depends on their carbon content and also influenced by the tungsten content in the alloys. However, at high temperatures the wear mechanisms of Stellite alloys become more complex, involving multiple factors. The relationships between chemical composition, microstructure, hardness and wear resistance of these alloys are studied, with focus on temperature effect on these relations.

Tool Wear and Surface Roughness Prediction using an Artificial Neural Network (ANN) in Turning Steel under Minimum Quantity Lubrication (MQL)

Tool wear and surface roughness prediction plays a significant role in machining industry for proper planning and control of machining parameters and optimization of cutting conditions. This paper deals with developing an artificial neural network (ANN) model as a function of cutting parameters in turning steel under minimum quantity lubrication (MQL). A feed-forward backpropagation network with twenty five hidden neurons has been selected as the optimum network. The co-efficient of determination (R2) between model predictions and experimental values are 0.9915, 0.9906, 0.9761 and 0.9627 in terms of VB, VM, VS and Ra respectively. The results imply that the model can be used easily to forecast tool wear and surface roughness in response to cutting parameters.

Impacts of Rail Transportation Projects on Urban Areas in Izmir-Turkey

With the development of technology, the growing trend of fast and safe passenger transport, air pollution, traffic congestion, increase in problems such as the increasing population and the high cost of private vehicle usage made many cities around the world with a population of more or less, start to build rail systems as a means of urban transport in order to ensure the economic and environmental sustainability and more efficient use of land in the city. The implementation phase of rail systems costs much more than other public transport systems. However, social and economic returns in the long term made these systems the most popular investment tool for planned and developing cities. In our country, the purpose, goals and policies of transportation plans are away from integrity, and the problems are not clearly detected. Also, not defined and incomplete assessment of transportation systems and insufficient financial analysis are the most important cause of failure. Rail systems and other transportation systems to be addressed as a whole is seen as the main factor in increasing efficiency in applications that are not integrated yet in our country to come to this point has led to the problem.

Conjunctive Surface Runoff and Groundwater Management in Salinity Soils

This research was conducted in the Lower Namkam Irrigation Project situated in the Namkam River Basin in Thailand. Degradation of groundwater quality in some areas is caused by saline soil spots beneath ground surface. However, the tail regulated gate structure on the Namkam River, a lateral stream of the Mekong River. It is aimed for maintaining water level in the river at +137.5 to +138.5 m (MSL) and flow to the irrigation canals based on a gravity system since July 2009. It might leach some saline soil spots from underground to soil surface if lack of understanding of the conjunctive surface water and groundwater behaviors. This research has been conducted by continuously the observing of both shallow and deep groundwater level and quality from existing observation wells. The simulation of surface water was carried out using a hydrologic modeling system (HEC-HMS) to compute the ungauged side flow catchments as the lateral flows for the river system model (HEC-RAS). The constant water levels in the upstream of the operated gate caused a slight rising up of shallow groundwater level when compared to the water table. However, the groundwater levels in the confined aquifers remained less impacted than in the shallow aquifers but groundwater levels in late of wet season in some wells were higher than the phreatic surface. This causes salinization of the groundwater at the soil surface and might affect some crops. This research aims for the balance of water stage in the river and efficient groundwater utilization in this area.

Recent Advances in Energy Materials for Hot Sections of Modern Gas-Turbine Engines

This presentation reviews recent advances in superalloys and thermal barrier coating (TBC) for application in hot sections of energy-efficient gas-turbine engines. It has been reviewed that in the modern combined-cycle gas turbines (CCGT) applying single-crystal energy materials (SC superalloys) and thermal barrier coatings (TBC), and – in one design – closed-loop steam cooling, thermal efficiency can reach more than 60%. These technological advancements contribute to profitable and clean power generation with reduced emission. Alternatively, the use of advanced superalloys (e.g. GTD-111 superalloy, Allvac 718Plus superalloy) and advanced thermal barrier coatings (TBC) in modern gas-turbines has been shown to yield higher energy-efficiency in power generation.

An Efficient Framework to Build Up Malware Dataset

This research paper presents a framework on how to build up malware dataset.Many researchers took longer time to clean the dataset from any noise or to transform the dataset into a format that can be used straight away for testing. Therefore, this research is proposing a framework to help researchers to speed up the malware dataset cleaningprocesses which later can be used for testing. It is believed, an efficient malware dataset cleaning processes, can improved the quality of the data, thus help to improve the accuracy and the efficiency of the subsequent analysis. Apart from that, an in-depth understanding of the malware taxonomy is also important prior and during the dataset cleaning processes. A new Trojan classification has been proposed to complement this framework.This experiment has been conducted in a controlled lab environment and using the dataset from VxHeavens dataset. This framework is built based on the integration of static and dynamic analyses, incident response method and knowledge database discovery (KDD) processes.This framework can be used as the basis guideline for malware researchers in building malware dataset.

An Implementation of MacMahon's Partition Analysis in Ordering the Lower Bound of Processing Elements for the Algorithm of LU Decomposition

A lot of Scientific and Engineering problems require the solution of large systems of linear equations of the form bAx in an effective manner. LU-Decomposition offers good choices for solving this problem. Our approach is to find the lower bound of processing elements needed for this purpose. Here is used the so called Omega calculus, as a computational method for solving problems via their corresponding Diophantine relation. From the corresponding algorithm is formed a system of linear diophantine equalities using the domain of computation which is given by the set of lattice points inside the polyhedron. Then is run the Mathematica program DiophantineGF.m. This program calculates the generating function from which is possible to find the number of solutions to the system of Diophantine equalities, which in fact gives the lower bound for the number of processors needed for the corresponding algorithm. There is given a mathematical explanation of the problem as well. Keywordsgenerating function, lattice points in polyhedron, lower bound of processor elements, system of Diophantine equationsand : calculus.

Turkish Emerging Adults' Identity Statuses with Respect to Marital and Parental Statuses and SES

Emerging adulthood, between the ages of 18 and 25, as a new developmental stage extending from adolescence to young adulthood. According to Arnett [2004], there are experiments related to identity in three basic fields which are love, work and view of the world in emerging adulthood. When the literature related to identity is examined, it is seen that identity has been studied more with adolescent, and studies were concentrated on the relationship of identity with many demographic variables neglecting important variables such as marital status, parental status and SES. Thus, the main aim of this study is to determine whether identity statuses differenciate with marital status, parental status and SES. A total of 700 emerging adults participated in this study, and the mean age was 22,45 years [SD = 3.76]. The sample was made up of 347 female and 353 male. All participants in the study were students from colleges. Student responses to the Extended Version of the Objective Measure of Ego Identity Status [EOM-EIS-2] used to classify students into one of the four identity statuses. SPSS 15.00 program wasa used to analyse data. Percentage, frequency and X2 analysis were used in the analysis of data. When the findings of the study is viewed as a whole, the most frequently observed identity status in the group is found to be moratorium. Also, identity statuses differenciate with marital status, parental status and SES. Findings were discussed in the context of emerging adulthood.

Liveness Detection for Embedded Face Recognition System

To increase reliability of face recognition system, the system must be able to distinguish real face from a copy of face such as a photograph. In this paper, we propose a fast and memory efficient method of live face detection for embedded face recognition system, based on the analysis of the movement of the eyes. We detect eyes in sequential input images and calculate variation of each eye region to determine whether the input face is a real face or not. Experimental results show that the proposed approach is competitive and promising for live face detection.