A New Pattern for Handwritten Persian/Arabic Digit Recognition

The main problem for recognition of handwritten Persian digits using Neural Network is to extract an appropriate feature vector from image matrix. In this research an asymmetrical segmentation pattern is proposed to obtain the feature vector. This pattern can be adjusted as an optimum model thanks to its one degree of freedom as a control point. Since any chosen algorithm depends on digit identity, a Neural Network is used to prevail over this dependence. Inputs of this Network are the moment of inertia and the center of gravity which do not depend on digit identity. Recognizing the digit is carried out using another Neural Network. Simulation results indicate the high recognition rate of 97.6% for new introduced pattern in comparison to the previous models for recognition of digits.

Monotonicity of Dependence Concepts from Independent Random Vector into Dependent Random Vector

When the failure function is monotone, some monotonic reliability methods are used to gratefully simplify and facilitate the reliability computations. However, these methods often work in a transformed iso-probabilistic space. To this end, a monotonic simulator or transformation is needed in order that the transformed failure function is still monotone. This note proves at first that the output distribution of failure function is invariant under the transformation. And then it presents some conditions under which the transformed function is still monotone in the newly obtained space. These concern the copulas and the dependence concepts. In many engineering applications, the Gaussian copulas are often used to approximate the real word copulas while the available information on the random variables is limited to the set of marginal distributions and the covariances. So this note catches an importance on the conditional monotonicity of the often used transformation from an independent random vector into a dependent random vector with Gaussian copulas.

Application of Adaptive Neuro-Fuzzy Inference System in Smoothing Transition Autoregressive Models

In this paper we propose and examine an Adaptive Neuro-Fuzzy Inference System (ANFIS) in Smoothing Transition Autoregressive (STAR) modeling. Because STAR models follow fuzzy logic approach, in the non-linear part fuzzy rules can be incorporated or other training or computational methods can be applied as the error backpropagation algorithm instead to nonlinear squares. Furthermore, additional fuzzy membership functions can be examined, beside the logistic and exponential, like the triangle, Gaussian and Generalized Bell functions among others. We examine two macroeconomic variables of US economy, the inflation rate and the 6-monthly treasury bills interest rates.

Vibration Suppression of Timoshenko Beams with Embedded Piezoelectrics Using POF

This paper deals with the design of a periodic output feedback controller for a flexible beam structure modeled with Timoshenko beam theory, Finite Element Method, State space methods and embedded piezoelectrics concept. The first 3 modes are considered in modeling the beam. The main objective of this work is to control the vibrations of the beam when subjected to an external force. Shear piezoelectric sensors and actuators are embedded into the top and bottom layers of a flexible aluminum beam structure, thus making it intelligent and self-adaptive. The composite beam is divided into 5 finite elements and the control actuator is placed at finite element position 1, whereas the sensor is varied from position 2 to 5, i.e., from the nearby fixed end to the free end. 4 state space SISO models are thus developed. Periodic Output Feedback (POF) Controllers are designed for the 4 SISO models of the same plant to control the flexural vibrations. The effect of placing the sensor at different locations on the beam is observed and the performance of the controller is evaluated for vibration control. Conclusions are finally drawn.

Assessing and Visualizing the Stability of Feature Selectors: A Case Study with Spectral Data

Feature selection plays an important role in applications with high dimensional data. The assessment of the stability of feature selection/ranking algorithms becomes an important issue when the dataset is small and the aim is to gain insight into the underlying process by analyzing the most relevant features. In this work, we propose a graphical approach that enables to analyze the similarity between feature ranking techniques as well as their individual stability. Moreover, it works with whatever stability metric (Canberra distance, Spearman's rank correlation coefficient, Kuncheva's stability index,...). We illustrate this visualization technique evaluating the stability of several feature selection techniques on a spectral binary dataset. Experimental results with a neural-based classifier show that stability and ranking quality may not be linked together and both issues have to be studied jointly in order to offer answers to the domain experts.

Possibilities of Delimitation of City Centers Using GIS

The article describes problems of city centers with regard to possibilities of their delimitation in a GIS environment. First the definitions and delimitations of a city centre which are in use are mentioned, furthermore a chosen case study (the historical centre of Olomouc city in the Czech Republic) is employed to describe the methods of delimitation in use. In addition to describing the current state, the article also deals with possibilities of delimitation of a city centre in GIS environment by means of several chosen approaches. The authors describe, compare and discuss the chosen methods and assess the achieved results and also applicability of the designed methods for other cities.

Laser Doppler Flowmetry in Diagnostics of Vascular Lesions in Lower Extremities

Laser Doppler flowmetry is a modern method of noninvasive microcirculation investigation. The aim of our study was to use this method in the examination of patients with secondary lymphedema of the lower extremities and obliterating atherosclerosis of lower extremities. In the analysis of the amplitude-frequency spectrum of secondary lymphedema patients we have identified remarkable changes. To describe the changes we used a special amplitude rate. In both of patients groups this rate was significally (p

Scalable Deployment and Configuration of High-Performance Virtual Clusters

Virtualization and high performance computing have been discussed from a performance perspective in recent publications. We present and discuss a flexible and efficient approach to the management of virtual clusters. A virtual machine management tool is extended to function as a fabric for cluster deployment and management. We show how features such as saving the state of a running cluster can be used to avoid disruption. We also compare our approach to the traditional methods of cluster deployment and present benchmarks which illustrate the efficiency of our approach.

Human Face Detection and Segmentation using Eigenvalues of Covariance Matrix, Hough Transform and Raster Scan Algorithms

In this paper we propose a novel method for human face segmentation using the elliptical structure of the human head. It makes use of the information present in the edge map of the image. In this approach we use the fact that the eigenvalues of covariance matrix represent the elliptical structure. The large and small eigenvalues of covariance matrix are associated with major and minor axial lengths of an ellipse. The other elliptical parameters are used to identify the centre and orientation of the face. Since an Elliptical Hough Transform requires 5D Hough Space, the Circular Hough Transform (CHT) is used to evaluate the elliptical parameters. Sparse matrix technique is used to perform CHT, as it squeeze zero elements, and have only a small number of non-zero elements, thereby having an advantage of less storage space and computational time. Neighborhood suppression scheme is used to identify the valid Hough peaks. The accurate position of the circumference pixels for occluded and distorted ellipses is identified using Bresenham-s Raster Scan Algorithm which uses the geometrical symmetry properties. This method does not require the evaluation of tangents for curvature contours, which are very sensitive to noise. The method has been evaluated on several images with different face orientations.

Terrain Evaluation Method for Hexapod Robot

In this paper a simple terrain evaluation method for hexapod robot is introduced. This method is based on feet coordinate evaluation when all are on the ground. Depending on the feet coordinate differences the local terrain evaluation is possible. Terrain evaluation is necessary for right gait selection and/or body position correction. For terrain roughness evaluation three planes are plotted: two of them as definition points use opposite feet coordinates, third coincides with the robot body plane. The leaning angle of body plane is evaluated measuring gravity force using three-axis accelerometer. Terrain roughness evaluation method is based on angle estimation between normal vectors of these planes. Aim of this work is to present a simple method for embedded robot controller, allowing to find the best further movement settings.

Integrating PZB Model and TRIZ for Service Innovation of Tele-Healthcare

Due to the rise of aging population, effective utilization of healthcare resources has become an important issue. With the advance of ICT technology, the application of tele-healthcare service has received more attention than ever. The main purpose of this research is to investigate how to conduct innovative design for tele-healthcare service based on user-s perspectives. First, the healthcare service blueprint was used to describe the processes of tele-healthcare service delivery, and then construct PZB service quality gap model based on the literature and practitioners- interviews. Next, TRIZ theory is applied to implement service innovation. We found the proposed service innovation procedures can effectively improve the quality of service design.

Consumer Insolvency in the Czech Republic

The Czech Republic is a country whose economy has undergone a transformation since 1989. Since joining the EU it has been striving to reduce the differences in its economic standard and the quality of its institutional environment in comparison with developed countries. According to an assessment carried out by the World Bank, the Czech Republic was long classed as a country whose institutional development was seen as problematic. For many years one of the things it was rated most poorly on was its bankruptcy law. The new Insolvency Act, which is a modern law in terms of its treatment of bankruptcy, was first adopted in the Czech Republic in 2006. This law, together with other regulatory measures, offers debtridden Czech economic subjects legal instruments which are well established and in common practice in developed market economies. Since then, analyses performed by the World Bank and the London EBRD have shown that there have been significant steps forward in the quality of Czech bankruptcy law. The Czech Republic still lacks an analytical apparatus which can offer a structured characterisation of the general and specific conditions of Czech company and household debt which is subject to current changes in the global economy. This area has so far not been given the attention it deserves. The lack of research is particularly clear as regards analysis of household debt and householders- ability to settle their debts in a reasonable manner using legal and other state means of regulation. We assume that Czech households have recourse to a modern insolvency law, yet the effective application of this law is hampered by the inconsistencies in the formal and informal institutions involved in resolving debt. This in turn is based on the assumption that this lack of consistency is more marked in cases of personal bankruptcy. Our aim is to identify the symptoms which indicate that for some time the effective application of bankruptcy law in the Czech Republic will be hindered by factors originating in householders- relative inability to identify the risks of falling into debt.

Efficient Realization of an ADFE with a New Adaptive Algorithm

Decision feedback equalizers are commonly employed to reduce the error caused by intersymbol interference. Here, an adaptive decision feedback equalizer is presented with a new adaptation algorithm. The algorithm follows a block-based approach of normalized least mean square (NLMS) algorithm with set-membership filtering and achieves a significantly less computational complexity over its conventional NLMS counterpart with set-membership filtering. It is shown in the results that the proposed algorithm yields similar type of bit error rate performance over a reasonable signal to noise ratio in comparison with the latter one.

News Media in Arab Societies

The paper examines the theories of media, dominant effects and critical and cultural theories that are used to examine media and society issues, and then apply the theories to explore the current situation of news media in Arab societies. The research is meant to explore the nature of media in the Arab world and the way that modern technologies have changed the nature of the Arab public sphere. It considers the role of an open press in promoting a more democratic society, while recognizing the unique qualities of an Arab culture.

Measuring Perceived Service Quality for Intelligent Living Space Showroom – Living 3.0 in Taiwan

This research explores visitor-s expectations of service quality in intelligent living space showroom – Living 3.0 in Taiwan. Based on the five dimensions of PZB service quality, a specialist questionnaire is utilized to establish a complete service quality evaluation framework for Living 3.0. In this research, analysis hierarchy process (AHP) is applied to find the relative weights among the criteria. Finally, the service quality evaluation framework and evaluation results can be used as a guide for Living 3.0 proprietors to review, improve, and enhance service planning and service qualities in the future.

In vitro Propagation of Purple Nutsedge (Cyperus rotundus L.) for Useful Chemical Extraction

The in vitro culture procedure of purple nutsedge (Cyperus rotundus L.) for multiple shoot induction and tuber formation was established. Multiple shoots were significantly induced from a single shoot of about 0.5 – 0.8 cm long, on Murashige and Skoog (MS) medium supplemented with 4.44 μM 6- benzyladinine (BA) alone or in combination with 2.85 μM 1- indoleacetic acid (IAA), providing 17.6 and 15.3 shoots per explant with 31.2 and 27.5 leaves per explant, respectively, within 6 weeks of culturing. Moreover, MS medium supplemented with 4.44 μM BA and 2.85 μM IAA was suitable for tuber induction, obtaining 5.9 tubers with 3.4 rhizomes per explant. In combination with ancymidol and higher concentration of sucrose, 11.1 μM BA and 60 g/L sucrose or 11.1 μM BA, 7.8 μM ancymidol and 60 g/L sucrose induced 3.5 tubers with 1.6 rhizomes or 3.5 tubers without rhizome, respectively. However, MS medium containing 3.9 or 7.8 μM ancymidol in combination with either 60 or 80 g/L sucrose enchanced significant root formation at 20.9 – 23.6 roots per explant.

Analysis of Wi-Fi Access Networks Situation in the City Area

With increasing number of wireless devices like laptops, Wi-Fi Web Cams, network extenders, etc., a new kind of problems appeared, mostly related to poor Wi-Fi throughput or communication problems. In this paper an investigation on wireless networks and it-s saturation in Vilnius City and its surrounding is presented, covering the main problems of wireless saturation and network load during day. Also an investigation on wireless channel selection and noise levels were made, showing the impact of neighbor AP to signal and noise levels and how it changes during the day.

New Delay-Dependent Stability Criteria for Neural Networks With Two Additive Time-varying Delay Components

In this paper, the problem of stability criteria of neural networks (NNs) with two-additive time-varying delay compenents is investigated. The relationship between the time-varying delay and its lower and upper bounds is taken into account when estimating the upper bound of the derivative of Lyapunov functional. As a result, some improved delay stability criteria for NNs with two-additive time-varying delay components are proposed. Finally, a numerical example is given to illustrate the effectiveness of the proposed method.

Production of Novel Bioactive Yogurt Enriched with Olive Fruit Polyphenols

In the course of the present work, plain (nonencapsulated) and microencapsulated polyphenols were produced using olive mill wastewater (OMW) as raw material, in order to be used for enrichment of yogurt and dairy products. The OMW was first clarified by using membrane technology and subsequently the contained poly-phenols were isolated by adsorption-desorption technique using selective macro-porous resins and finally recovered in dry form after been processed by RO membrane technique followed by freeze drying. Moreover, the polyphenols were encapsulated in modified starch by freeze drying in order to mask the color and bitterness effect and improve their functionality. The two products were used successfully as additives in yogurt preparations and the produced products were acceptable by the consumers and presented with certain advantage to the plain yogurt. For the herein proposed production scheme a patent application was already submitted.

Turbine Follower Control Strategy Design Based on Developed FFPP Model

In this paper a comprehensive model of a fossil fueled power plant (FFPP) is developed in order to evaluate the performance of a newly designed turbine follower controller. Considering the drawbacks of previous works, an overall model is developed to minimize the error between each subsystem model output and the experimental data obtained at the actual power plant. The developed model is organized in two main subsystems namely; Boiler and Turbine. Considering each FFPP subsystem characteristics, different modeling approaches are developed. For economizer, evaporator, superheater and reheater, first order models are determined based on principles of mass and energy conservation. Simulations verify the accuracy of the developed models. Due to the nonlinear characteristics of attemperator, a new model, based on a genetic-fuzzy systems utilizing Pittsburgh approach is developed showing a promising performance vis-à-vis those derived with other methods like ANFIS. The optimization constraints are handled utilizing penalty functions. The effect of increasing the number of rules and membership functions on the performance of the proposed model is also studied and evaluated. The turbine model is developed based on the equation of adiabatic expansion. Parameters of all evaluated models are tuned by means of evolutionary algorithms. Based on the developed model a fuzzy PI controller is developed. It is then successfully implemented in the turbine follower control strategy of the plant. In this control strategy instead of keeping control parameters constant, they are adjusted on-line with regard to the error and the error rate. It is shown that the response of the system improves significantly. It is also shown that fuel consumption decreases considerably.