CO-OFDM DSP Channel Estimation

This paper solves the Non Linear Schrodinger Equation using the Split Step Fourier method for modeling an optical fiber. The model generates a complex wave of optical pulses and using the results obtained two graphs namely Loss versus Wavelength and Dispersion versus Wavelength are generated. Taking Chromatic Dispersion and Polarization Mode Dispersion losses into account, the graphs generated are compared with the graphs formulated by JDS Uniphase Corporation which uses standard values of dispersion for optical fibers. The graphs generated when compared with the JDS Uniphase Corporation plots were found to be more or less similar thus verifying that the model proposed is right. MATLAB software was used for doing the modeling.

Loss Analysis of Half Bridge DC-DC Converters in High-Current and Low-Voltage Applications

In this paper, half bridge DC-DC converters with transformer isolation presented in the literature are analyzed for highcurrent and low-voltage applications under the same operation conditions, and compared in terms of losses and efficiency. The conventional and improved half-bridge DC-DC converters are simulated, and current and voltage waveforms are obtained for input voltage Vdc=500V, output current IO=450A, output voltage VO=38V and switching frequency fS=20kHz. IGBTs are used as power semiconductor switches. The power losses of the semiconductor devices are calculated from current and voltage waveforms. From simulation results, it is seen that the capacitor switched half bridge converter has the best efficiency value, and can be preferred at high power and high frequency applications.

Instability of Soliton Solutions to the Schamel-nonlinear Schrödinger Equation

A variational method is used to obtain the growth rate of a transverse long-wavelength perturbation applied to the soliton solution of a nonlinear Schr¨odinger equation with a three-half order potential. We demonstrate numerically that this unstable perturbed soliton will eventually transform into a cylindrical soliton.

A Virtual Simulation Environment for a Design and Verification of a GPGPU

When a small H/W IP is designed, we can develop an appropriate verification environment by observing the simulated signal waves, or using the serial test vectors for the fixed output. In the case of design and verification of a massive parallel processor with multiple IPs, it-s difficult to make a verification system with existing common verification environment, and to verify each partial IP. A TestDrive verification environment can build easy and reliable verification system that can produce highly intuitive results by applying Modelsim and SystemVerilog-s DPI. It shows many advantages, for example a high-level design of a GPGPU processor design can be migrate to FPGA board immediately.

Efficient Electromagnetic Modeling of Dual-GateTransistor with Iterative Method using Auxiliary Sources

In this paper, an efficient wave concept iterative process (WCIP) with auxiliary Sources is presented for full wave investigation of an active microwave structure on micro strip technology. Good agreement between the experimental and simulation results is observed.

Fusing Local Binary Patterns with Wavelet Features for Ethnicity Identification

Ethnicity identification of face images is of interest in many areas of application, but existing methods are few and limited. This paper presents a fusion scheme that uses block-based uniform local binary patterns and Haar wavelet transform to combine local and global features. In particular, the LL subband coefficients of the whole face are fused with the histograms of uniform local binary patterns from block partitions of the face. We applied the principal component analysis on the fused features and managed to reduce the dimensionality of the feature space from 536 down to around 15 without sacrificing too much accuracy. We have conducted a number of preliminary experiments using a collection of 746 subject face images. The test results show good accuracy and demonstrate the potential of fusing global and local features. The fusion approach is robust, making it easy to further improve the identification at both feature and score levels.

A Study of the Relation of Wave Height and Erosion at Bangkhuntien Shoreline, Thailand

In this paper, the significant wave height at the Upper Gulf of Thailand and the changing of wave height at Bangkhuntien shoreline were simulated by using the Simulating WAves Nearshore Model (SWAN) version 40.51. The simulated results indicated that the significant wave height by SWAN model corresponded with the observed data. The results showed that the maximum significant wave height at the Bangkhuntien shoreline were 1.06-2.05 m. and the average significant wave height at the Bangkhuntien shoreline were 0.30-0.47 m. The significant wave height can be used to calculate the erosion through the Bangkhuntien shoreline. The erosion rates at the Bangkhuntien shoreline were prepared by using the aerial photo and they were about 1.80 m/yr. from 1980- 1986, 4.75 m/yr from 1987-1993, 15.28 m/yr from 1994-1996 and 10.03 m/yr from 1997-2002. The relation between the wave energy and the erosion were in good agreement. Therefore, the significant wave height was one of the major factors of the erosion at the Bangkhuntien shoreline.

Vortex Shedding at the End of Parallel-plate Thermoacoustic Stack in the Oscillatory Flow Conditions

This paper investigates vortex shedding processes occurring at the end of a stack of parallel plates, due to an oscillating flow induced by an acoustic standing wave within an acoustic resonator. Here, Particle Image Velocimetry (PIV) is used to quantify the vortex shedding processes within an acoustic cycle phase-by-phase, in particular during the “ejection" of the fluid out of the stack. Standard hot-wire anemometry measurement is also applied to detect the velocity fluctuations near the end of the stack. Combination of these two measurement techniques allowed a detailed analysis of the vortex shedding phenomena. The results obtained show that, as the Reynolds number varies (by varying the plate thickness and drive ratio), different flow patterns of vortex shedding are observed by the PIV measurement. On the other hand, the time-dependent hot-wire measurements allow obtaining detailed frequency spectra of the velocity signal, used for calculating characteristic Strouhal numbers. The impact of the plate thickness and the Reynolds number on the vortex shedding pattern has been discussed. Furthermore, a detailed map of the relationship between the Strouhal number and Reynolds number has been obtained and discussed.

Analysis of Wave Propagation in Two-dimensional Phononic Crystals with Hollow Cylinders

Large full frequency band gaps of surface and bulk acoustic waves in two-dimensional phononic band structures with hollow cylinders are addressed in this paper. It is well-known that absolute frequency band gaps are difficultly obtained in a band structure consisted of low-acoustic-impedance cylinders in high-acoustic-impedance host materials such as PMMA/Ni band structures. Phononic band structures with hollow cylinders are analyzed and discussed to obtain large full frequency band gaps not only for bulk modes but also for surface modes. The tendency of absolute frequency band gaps of surface and bulk acoustic waves is also addressed by changing the inner radius of hollow cylinders in this paper. The technique and this kind of band structure are useful for tuning the frequency band gaps and the design of acoustic waveguides.

The Use of Complex Contourlet Transform on Fusion Scheme

Image fusion aims to enhance the perception of a scene by combining important information captured by different sensors. Dual-Tree Complex Wavelet (DT-CWT) has been thouroughly investigated for image fusion, since it takes advantages of approximate shift invariance and direction selectivity. But it can only handle limited direction information. To allow a more flexible directional expansion for images, we propose a novel fusion scheme, referred to as complex contourlet transform (CCT). It successfully incorporates directional filter banks (DFB) into DT-CWT. As a result it efficiently deal with images containing contours and textures, whereas it retains the property of shift invariance. Experimental results demonstrated that the method features high quality fusion performance and can facilitate many image processing applications.

Fault Zone Detection on Advanced Series Compensated Transmission Line using Discrete Wavelet Transform and SVM

In this paper a novel method for finding the fault zone on a Thyristor Controlled Series Capacitor (TCSC) incorporated transmission line is presented. The method makes use of the Support Vector Machine (SVM), used in the classification mode to distinguish between the zones, before or after the TCSC. The use of Discrete Wavelet Transform is made to prepare the features which would be given as the input to the SVM. This method was tested on a 400 kV, 50 Hz, 300 Km transmission line and the results were highly accurate.

Bifurcations and Chaotic Solutions of Two-dimensional Zonal Jet Flow on a Rotating Sphere

We study bifurcation structure of the zonal jet flow the streamfunction of which is expressed by a single spherical harmonics on a rotating sphere. In the non-rotating case, we find that a steady traveling wave solution arises from the zonal jet flow through Hopf bifurcation. As the Reynolds number increases, several traveling solutions arise only through the pitchfork bifurcations and at high Reynolds number the bifurcating solutions become Hopf unstable. In the rotating case, on the other hand, under the stabilizing effect of rotation, as the absolute value of rotation rate increases, the number of the bifurcating solutions arising from the zonal jet flow decreases monotonically. We also carry out time integration to study unsteady solutions at high Reynolds number and find that in the non-rotating case the unsteady solutions are chaotic, while not in the rotating cases calculated. This result reflects the general tendency that the rotation stabilizes nonlinear solutions of Navier-Stokes equations.

Mechanical and Chemical Reliability Assessment of Silica Optical Fibres

The current study has investigated the ageing phenomena of silica optical fibres in relation to water activity which might be accelerated when exposed to a supplementary energy, such as microwaves. A controlled stress by winding fibres onto accurate diameter mandrel was applied. Taking into account that normally a decrease in fibre strength is induced in time by chemical action of water, the effects of cumulative reagents such as: water, applied stress and supplementary energy (microwave) in some cases acted in the opposite manner. The microwave effect as a structural relaxation catalyst appears unexpected, even if the overall gain in fibre strength is not high, but the stress corrosion factor revealed significant increase in certain simulation conditions.

A Parallel Quadtree Approach for Image Compression using Wavelets

Wavelet transforms are multiresolution decompositions that can be used to analyze signals and images. Image compression is one of major applications of wavelet transforms in image processing. It is considered as one of the most powerful methods that provides a high compression ratio. However, its implementation is very time-consuming. At the other hand, parallel computing technologies are an efficient method for image compression using wavelets. In this paper, we propose a parallel wavelet compression algorithm based on quadtrees. We implement the algorithm using MatlabMPI (a parallel, message passing version of Matlab), and compute its isoefficiency function, and show that it is scalable. Our experimental results confirm the efficiency of the algorithm also.

Wavelet Enhanced CCA for Minimization of Ocular and Muscle Artifacts in EEG

Electroencephalogram (EEG) recordings are often contaminated with ocular and muscle artifacts. In this paper, the canonical correlation analysis (CCA) is used as blind source separation (BSS) technique (BSS-CCA) to decompose the artifact contaminated EEG into component signals. We combine the BSSCCA technique with wavelet filtering approach for minimizing both ocular and muscle artifacts simultaneously, and refer the proposed method as wavelet enhanced BSS-CCA. In this approach, after careful visual inspection, the muscle artifact components are discarded and ocular artifact components are subjected to wavelet filtering to retain high frequency cerebral information, and then clean EEG is reconstructed. The performance of the proposed wavelet enhanced BSS-CCA method is tested on real EEG recordings contaminated with ocular and muscle artifacts, for which power spectral density is used as a quantitative measure. Our results suggest that the proposed hybrid approach minimizes ocular and muscle artifacts effectively, minimally affecting underlying cerebral activity in EEG recordings.

Flowability and Strength Development Characteristics of Bottom Ash Based Geopolymer

Despite of the preponderant role played by cement among the construction materials, it is today considered as a material destructing the environment due to the large quantities of carbon dioxide exhausted during its manufacture. Besides, global warming is now recognized worldwide as the new threat to the humankind against which advanced countries are investigating measures to reduce the current amount of exhausted gases to the half by 2050. Accordingly, efforts to reduce green gases are exerted in all industrial fields. Especially, the cement industry strives to reduce the consumption of cement through the development of alkali-activated geopolymer mortars using industrial byproducts like bottom ash. This study intends to gather basic data on the flowability and strength development characteristics of alkali-activated geopolymer mortar by examining its FT-IT features with respect to the effects and strength of the alkali-activator in order to develop bottom ash-based alkali-activated geopolymer mortar. The results show that the 35:65 mass ratio of sodium hydroxide to sodium silicate is appropriate and that a molarity of 9M for sodium hydroxide is advantageous. The ratio of the alkali-activators to bottom ash is seen to have poor effect on the strength. Moreover, the FT-IR analysis reveals that larger improvement of the strength shifts the peak from 1060 cm–1 (T-O, T=Si or Al) toward shorter wavenumber.

Fault Detection of Pipeline in Water Distribution Network System

Water pipe network is installed underground and once equipped, it is difficult to recognize the state of pipes when the leak or burst happens. Accordingly, post management is often delayed after the fault occurs. Therefore, the systematic fault management system of water pipe network is required to prevent the accident and minimize the loss. In this work, we develop online fault detection system of water pipe network using data of pipes such as flow rate or pressure. The transient model describing water flow in pipelines is presented and simulated using MATLAB. The fault situations such as the leak or burst can be also simulated and flow rate or pressure data when the fault happens are collected. Faults are detected using statistical methods of fast Fourier transform and discrete wavelet transform, and they are compared to find which method shows the better fault detection performance.

Visualization of Sediment Thickness Variation for Sea Bed Logging using Spline Interpolation

This paper discusses on the use of Spline Interpolation and Mean Square Error (MSE) as tools to process data acquired from the developed simulator that shall replicate sea bed logging environment. Sea bed logging (SBL) is a new technique that uses marine controlled source electromagnetic (CSEM) sounding technique and is proven to be very successful in detecting and characterizing hydrocarbon reservoirs in deep water area by using resistivity contrasts. It uses very low frequency of 0.1Hz to 10 Hz to obtain greater wavelength. In this work the in house built simulator was used and was provided with predefined parameters and the transmitted frequency was varied for sediment thickness of 1000m to 4000m for environment with and without hydrocarbon. From series of simulations, synthetics data were generated. These data were interpolated using Spline interpolation technique (degree of three) and mean square error (MSE) were calculated between original data and interpolated data. Comparisons were made by studying the trends and relationship between frequency and sediment thickness based on the MSE calculated. It was found that the MSE was on increasing trends in the set up that has the presence of hydrocarbon in the setting than the one without. The MSE was also on decreasing trends as sediment thickness was increased and with higher transmitted frequency.

Differentiation of Cancerous Prostate tissue from Non-Cancerous Prostate tissue by using Elastic Light Single-Scattering Spectroscopy: A Feasibility Study

Elastic light single-scattering spectroscopy system with a single optical fiber probe was employed to differentiate cancerous prostate tissue from non-cancerous prostate tissue ex-vivo just after radical prostatectomy. First, ELSSS spectra were acquired from cancerous prostate tissue to define its spectral features. Then, spectra were acquired from normal prostate tissue to define difference in spectral features between the cancerous and normal prostate tissues. Of the total 66 tissue samples were evaluated from nine patients by ELSSS system. Comparing of histopathology results and ELSSS measurements revealed that sign of the spectral slopes of cancerous prostate tissue is negative and non-cancerous tissue is positive in the wavelength range from 450 to 750 nm. Based on the correlation between histopathology results and sign of the spectral slopes, ELSSS system differentiates cancerous prostate tissue from non- cancerous with a sensitivity of 0.95 and a specificity of 0.94.

Bayesian Networks for Earthquake Magnitude Classification in a Early Warning System

During last decades, worldwide researchers dedicated efforts to develop machine-based seismic Early Warning systems, aiming at reducing the huge human losses and economic damages. The elaboration time of seismic waveforms is to be reduced in order to increase the time interval available for the activation of safety measures. This paper suggests a Data Mining model able to correctly and quickly estimate dangerousness of the running seismic event. Several thousand seismic recordings of Japanese and Italian earthquakes were analyzed and a model was obtained by means of a Bayesian Network (BN), which was tested just over the first recordings of seismic events in order to reduce the decision time and the test results were very satisfactory. The model was integrated within an Early Warning System prototype able to collect and elaborate data from a seismic sensor network, estimate the dangerousness of the running earthquake and take the decision of activating the warning promptly.