Using Strategic CSR to Achieve the Hybrid Middle Ground in Social Entrepreneurship: The Case of Telenor Hungary

To be considered a socially entrepreneurial organization today requires achieving what can be termed a “hybrid middle ground” equilibrium, comprising of economic as well as social sustainability. This middle ground requires some blend of both business and social commitments. In this paper, we use the case of Hungary's second ranked mobile operator, Telenor Hungary to illustrate an example of a company that is moving to the hybrid middle ground by transitioning from a for-profit company to a socially responsible business using the concept of strategic CSR. In this line of thinking, the organization explicitly supports programs and initiatives that have a direct link to the core business and bring operational and/or financial advantages for the company, while creating a positive social and/or environmental impact. The important lessons learned from the company transition are also discussed. 

Evaluation of Energy and Environmental Aspects of Reduced Tillage Systems Applied in Maize Cultivation

In maize growing technologies, tillage technological operations are the most time-consuming and require the greatest fuel input. Substitution of conventional tillage, involving deep ploughing, by other reduced tillage methods can reduce technological production costs, diminish soil degradation and environmental pollution from greenhouse gas emissions, as well as improve economic competitiveness of agricultural produce. Experiments designed to assess energy and environmental aspects associated with different reduced tillage systems, applied in maize cultivation were conducted at Aleksandras Stulginskis University taking into account Lithuania’s economic and climate conditions. The study involved 5 tillage treatments: deep ploughing (DP, control), shallow ploughing (SP), deep cultivation (DC), shallow cultivation (SC) and no-tillage (NT). Our experimental evidence suggests that with the application of reduced tillage systems it is feasible to reduce fuel consumption by 13-58% and working time input by 8.4% to nearly 3-fold, to reduce the cost price of maize cultivation technological operations, decrease environmental pollution with CO2 gas by 30 to 146 kg ha-1, compared with the deep ploughing.

Adsorption Refrigeration Working Pairs: The State-of-the-Art in the Application

Adsorption refrigeration working pair is a vital and is the main component in the adsorption refrigeration machine. Therefore the development key is laying on the adsorption pair that leads to the improvement of the adsorption refrigeration machine. In this study the state-of-the-art in the application of the adsorption refrigeration working pairs in both classical and modern adsorption pairs are presented, compared and summarized. It is found that the maximum adsorption capacity for the classical working pairs was 0.259kg/kg for activated carbon/methanol and that for the modern working pairs was 2kg/kg for maxsorb III/R-134a. The study concluded that, the performances of the adsorption working pairs of adsorption cooling systems are still need further investigations as well as developing adsorption pairs having higher sorption capacity with low or no impact on environmental, to build compact, efficient, reliable and long life performance adsorption chillier. Also, future researches need to be focused on designing the adsorption system that provide efficient heating and cooling for the adsorbent materials through distributing the adsorbent material over heat exchanger surface, to allow good heat and mass transfer between the adsorbent and the refrigerant.

Green-Reduction of Covalently Functionalized Graphene Oxide with Varying Stoichiometry

Graphene-based materials were prepared by chemical reduction of covalently functionalized graphene oxide with environmentally friendly agents. Two varying stoichiometry of graphene oxide (GO) induced by using different chemical preparation conditions, further covalent functionalization of the GO materials with 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride / N-hydroxysuccinimide and ascorbic acid and sodium bisulfite as reducing agents were exploited in order to obtain controllable properties of the final solution-based graphene materials. The obtained materials were characterized by thermo-gravimetric analysis, Fourier transform infrared and Raman spectroscopy and X-ray diffraction. The results showed successful functionalization of the GO materials, while a comparison of the deoxygenation efficiency of the two-type functionalized graphene oxide suspensions by the different reducing agents has been made, revealing the strong dependence of their properties on the GO structure and reducing agents.

Resource Efficiency within Current Production

In times of global warming and the increasing shortage of resources, sustainable production is becoming more and more inevitable. Companies cannot only heighten their competitiveness but also contribute positively to environmental protection through efficient energy and resource consumption. Regarding this, technical solutions are often preferred during production, although organizational and process-related approaches also offer great potential. This project focuses on reducing resource usage, with a special emphasis on the human factor. It is the aspiration to develop a methodology that systematically implements and embeds suitable and individual measures and methods regarding resource efficiency throughout the entire production. The measures and methods established help employees handle resources and energy more sensitively. With this in mind, this paper also deals with the difficulties that can occur during the sensitization of employees and the implementation of these measures and methods. In addition, recommendations are given on how to avoid such difficulties.

Modeling Moisture and Density Behaviors of Wood in Biomass Torrefaction Environments

Worldwide interests for the renewable energy are increasing due to environmental and climate changes from traditional petroleum related energy sources. To account for these social needs, ligneous biomass energy is considered as one of the environmentally friend energy solutions. The wood torrefaction process is a feasible method to improve the properties of the biomass fuel and makes the wood have low moisture, lower smoke emission and increased heating value. In this work, therefore, the moisture evaporation model which largely affects energy efficiency of ligneous biomass through moisture contents and heating value relative to its weight is studied with numerical modeling approach by analyzing the effects of torrefaction furnace temperature. The results show that the temperature and moisture fraction of wood decrease by increasing the furnace temperature. When the torrefaction temperature is lower than 423K, there were little changes of the moisture fraction in the wood. Also, it can be found that charcoal is produced more slowly when the torrefaction temperature is lower than 573K.

Bio-Ecological Monitoring of Potatoes Stem Nematodes (Ditylenchus destructor Thorne, 1945) in Four Major Potato-Planter Municipalities of Kvemo Kartli (Eastern Georgia) Accompanying Fauna Biodiversity

There has been studied the distribution character of potato stem nematode (Ditylenchus destructor Thorne, 1945) on the potato fields in four municipalities (Tsalka, Bolnisi, Marneuli, Gardabani) of Kvemo Kartli (Eastern Georgia). As a result of scientific research there is stated the extensiveness of pathogens invasion, accompanying composition of fauna species, environmental groups of populations and quantity. During the research process in the studied ecosystems there were registered 160 forms of free-living and Phyto-parasitic nematodes, from which 118 forms are determined as species and 42 as genus. It was found that in almost the entire studied ecosystem there is dominated pathogenic nematodes Ditylenchus destructor. The large number of exemplars (almost uncountable) was found in tubers material of Bolnisi and Gardabani. 

Comparative Life Cycle Assessment of High Barrier Polymer Packaging for Selecting Resource Efficient and Environmentally Low-Impact Materials

In this study tree types of multilayer gas barrier plastic packaging films were compared using life cycle assessment as a tool for resource efficient and environmentally low-impact materials selection. The first type of multilayer packaging film (PET-AlOx/LDPE) consists of polyethylene terephthalate with barrier layer AlOx (PET-AlOx) and low density polyethylene (LDPE). The second type of polymer film (PET/PE-EVOH-PE) is made of polyethylene terephthalate (PET) and co-extrusion film PE-EVOH-PE as barrier layer. And the third one type of multilayer packaging film (PET-PVOH/LDPE) is formed from polyethylene terephthalate with barrier layer PVOH (PET-PVOH) and low density polyethylene (LDPE). All of analyzed packaging has significant impact to resource depletion, because of raw materials extraction and energy use and production of different kind of plastics. Nevertheless the impact generated during life cycle of functional unit of II type of packaging (PET/PE-EVOH-PE) was about 25% lower than impact generated by I type (PET-AlOx/LDPE) and III type (PET-PVOH/LDPE) of packaging. Result revealed that the contribution of different gas barrier type to the overall environmental problem of packaging is not significant. The impact are mostly generated by using energy and materials during raw material extraction and production of different plastic materials as plastic polymers material as PE, LDPE and PET, but not gas barrier materials as AlOx, PVOH and EVOH. The LCA results could be useful in different decision-making processes, for selecting resource efficient and environmentally low-impact materials.

Elicitation of Requirements for a Knowledge Management Concept in Decentralized Production Planning

The planning in manufacturing system is becoming complicated day by day due to the expanding networks and shortage of skilled people to manage change. Consequently, faster lead time and rising demands for eco-efficient evaluation of manufacturing products and processes need exploitation of new and intelligent knowledge management concepts for manufacturing planning. This paper highlights motivation for incorporation of new features in the manufacturing planning system. Furthermore, it elaborates requirements for the development of intelligent knowledge management concept to support planning related decisions. Afterwards, the derived concept is presented in this paper considering two case studies. The first case study is concerned with the automotive ramp-up planning. The second case study specifies requirements for knowledge management system to support decisions in eco-efficient evaluation of manufacturing products and processes

Nile Red, an Alternative Fluorescence Method for Quantification of Neutral Lipids in Microalgae

According to biodiesel from microalgae is an attractive fuel for several reasons such as renewable, biodegradable and environmental friendly. Thus, this study, green microalgae Scenedesmus acutus PPNK1 isolated from natural water, was selected based on high growth rates, easy cultivation and high lipid content. The Nile red fluorescence method has been successfully applied to the determination of lipids in S. acutus PPNK1. The combination of the method to the lipid composition in algal cells showed the yellow fluorescence under fluorescent microscope. Interestingly, maximum cell numbers and biomass concentration were obtained at 5.44´107 cells/mL and 1.60 g/L when it was cultivated in BG-11 medium while in case of BG-11 with nitrogen deprivation (N 0.25 g/L), accumulated lipid content in cells (44.67%) was achieved that was higher than that found in case of BG-11 medium at about 2 times (22.63%).

Biodegradation of Polyhydroxybutyrate-Co- Hydroxyvalerate (PHBV) Blended with Natural Rubber in Soil Environment

According to synthetic plastics obtained from petroleum cause some environmental problems. Therefore, degradable plastics become widely used and studied for replacing the synthetic plastic waste. A biopolymer of poly hydroxybutyrate-co-hydroxyvalerate (PHBV) is subgroups of a main kind of polyhydroxyalkanoates (PHAs). Naturally, PHBV is hard, brittle and low flexible while natural rubber (NR) is high elastic latex. Then, they are blended and the biodegradation of the blended PHBV and NR films were examined in soil environment. The results showed that the degradation occurs predominantly in the bulk of the samples. The order of biodegradability was shown as follows: PHBV> PHBV/NR> NR. After biodegradation, the blended films were characterized by appearance analysis such as Scanning Electron Microscope (SEM), Fourier transform infrared spectroscopy (FTIR) and Differential Scanning Calorimetry (DSC). It was found that the biodegradation mainly occurred at the polymer surface.

Disclosing the Relationship among CO2 Emissions, Energy Consumption, Economic Growth and Bilateral Trade between Singapore and Malaysia: An Econometric Analysis

The aim of this paper is to examine the relationship among CO2 per capita emissions, energy consumption, economic growth and bilateral trade between Singapore and Malaysia for the 1970-2011 period. ARDL model and Granger causality tests are employed for the analysis.  Results of bound F-statistics suggest that long-run  relationship exists between CO2 per capita (PCO2) and its determinants. The EKC hypothesis is not supported in Malaysia. Carbon emissions are mainly determined by energy consumption in the short and long run. While, exports to Singapore is a significant variable in explaining PCO2 emissions in Malaysia in long-run. Furthermore, we find a unidirectional causal relationship running from economic growth to PCO2 emissions.

Utilization of Laser-Ablation Based Analytical Methods for Obtaining Complete Chemical Information of Algae

Themain goal of this article is to find efficient methods for elemental and molecular analysis of living microorganisms (algae) under defined environmental conditions and cultivation processes. The overall knowledge of chemical composition is obtained utilizing laser-based techniques, Laser- Induced Breakdown Spectroscopy (LIBS) for acquiring information about elemental composition and Raman Spectroscopy for gaining molecular information, respectively. Algal cells were suspended in liquid media and characterized using their spectra. Results obtained employing LIBS and Raman Spectroscopy techniques will help to elucidate algae biology (nutrition dynamics depending on cultivation conditions) and to identify algal strains, which have the potential for applications in metal-ion absorption (bioremediation) and biofuel industry. Moreover, bioremediation can be readily combined with production of 3rd generation biofuels. In order to use algae for efficient fuel production, the optimal cultivation parameters have to be determinedleading to high production of oil in selected cellswithout significant inhibition of the photosynthetic activity and the culture growth rate, e.g. it is necessary to distinguish conditions for algal strain containing high amount of higher unsaturated fatty acids. Measurements employing LIBS and Raman Spectroscopy were utilized in order to give information about alga Trachydiscusminutus with emphasis on the amount of the lipid content inside the algal cell and the ability of algae to withdraw nutrients from its environment and bioremediation (elemental composition), respectively. This article can serve as the reference for further efforts in describing complete chemical composition of algal samples employing laserablation techniques.

Eco-Roof Systems in Subtropical Climates for Sustainable Development and Mitigation of Climate Change

The benefits of eco-roofs is quite well known, however there remains very little research conducted for the implementation of eco-roofs in subtropical climates such as Australia. There are many challenges facing Australia as it moves into the future, climate change is proving to be one of the leading challenges. In order to move forward with the mitigation of climate change, the impacts of rapid urbanization need to be offset. Eco-roofs are one way to achieve this; this study presents the energy savings and environmental benefits of the implementation of eco-roofs in subtropical climates. An experimental set-up was installed at Rockhampton campus of Central Queensland University, where two shipping containers were converted into small offices, one with an eco-roof and one without. These were used for temperature, humidity and energy consumption data collection. In addition, a computational model was developed using Design Builder software (state-of-the-art building energy simulation software) for simulating energy consumption of shipping containers and environmental parameters, this was done to allow comparison between simulated and real world data. This study found that eco-roofs are very effective in subtropical climates and provide energy saving of about 13% which agrees well with simulated results. 

Structural Sustainability Techniques for RC High Rise Buildings

Over the early years of the 21st century, cities throughout the Middle East, particularly in the Gulf region have expanded more rapidly than ever before. Given the presence of a large volume of high-rise buildings allover the region, the local authority aims to set a new standard for sustainable development; with an integrated approach to maintain a balance between economy, quality, environmental protection and safety of life. In the very near future, as mandatory requirements, sustainability will be the criteria that should be included in all building projects. It is well known in the building sustainability topics that structural design engineers do not have a key role in this matter. In addition, the LEED (Leadership in Energy and Environmental Design) has looked almost exclusively on the environmental components and materials specifications. The objective of this paper is to focus and establish groundwork for sustainability techniques and applications related to the RC high-rise buildings design, from the structural point of view. A set of recommendations related to local conditions, structural modeling and analysis is given, and some helpful suggestions for structural design team work are addressed. This paper attempts to help structural engineers in identifying the building sustainability design, in order to meet local needs and achieve alternative solutions at an early stage of project design.

Examining Organizational Improvisation: The Role of Strategic Reasoning and Managerial Factors

Recent environmental turbulence including financial crisis, intensified competitive forces, rapid technological change and high market turbulence have dramatically changed the current business climate. The managers firms have to plan and decide what the best approaches that best fit their firms in order to pursue superior performance. This research aims to examine the influence of strategic reasoning and top level managers- individual characteristics on the effectiveness of organizational improvisation and firm performance. Given the lack of studies on these relationships in the previous literature, there is significant contribution to the body of knowledge as well as for managerial practices. 128 responses from top management of technology-based companies in Malaysia were used as a sample. Three hypotheses were examined and the findings confirm that (a) there is no relationship between intuitive reasoning and organizational improvisation but there is a link between rational reasoning and organizational improvisation, (b) top level managers- individual characteristics as a whole affect organizational improvisation; and (c) organizational improvisation positively affects firm performance. The theoretical and managerial implications were discussed in the conclusions.

Hydrophobic Characteristics of EPDM Composite Insulators in Simulated Arid Desert Environment

Overhead electrical insulators form an important link in an electric power system. Along with the traditional insulators (i.e. glass and porcelain, etc) presently the polymeric insulators are also used world widely. These polymeric insulators are very sensitive to various environmental parameters such temperature, environmental pollution, UV-radiations, etc. which seriously effect their electrical, chemical and hydrophobic properties. The UV radiation level in the central region of Saudi Arabia is high as compared to the IEC standard for the accelerated aging of the composite insulators. Commonly used suspension type of composite EPDM (Ethylene Propylene Diene Monomer) insulator was subjected to accelerated stress aging as per modified IEC standard simulating the inland arid deserts atmospheric condition and also as per IEC-61109 standard. The hydrophobic characteristics were studied by measuring the contact angle along the insulator surface before and after the accelerated aging of the samples. It was found that EPDM insulator loses it hydrophobic properties proportional to the intensity of UV irradiations and its rate of recovery is also very low as compared to Silicone Rubber insulator.KeywordsEPDM, composite insulators, accelerated aging, hydrophobicity, contact angle.

Cold-pressed Kenaf and Fibreglass Hybrid Composites Laminates: Effect of Fibre Types

Natural fibres have emerged as the potential reinforcement material for composites and thus gain attraction by many researchers. This is mainly due to their applicable benefits as they offer low density, low cost, renewable, biodegradability and environmentally harmless and also comparable mechanical properties with synthetic fibre composites. The properties of hybrid composites highly depends on several factors, including the interaction of fillers with the polymeric matrix, shape and size (aspect ratio), and orientation of fillers [1]. In this study, natural fibre kenaf composites and kenaf/fibreglass hybrid composites were fabricated by a combination of hand lay-up method and cold-press method. The effect of different fibre types (powder, short and long) on the tensile properties of composites is investigated. The kenaf composites with and without the addition of fibreglass were then characterized by tensile testing and scanning electron microscopy. A significant improvement in tensile strength and modulus were indicated by the introduction of long kenaf/woven fibreglass hybrid composite. However, the opposite trends are observed in kenaf powder composite. Fractographic observation shows that fibre/matrix debonding causes the fibres pull out. This phenomenon results in the fibre and matrix fracture.

Approach to Implementation of Power Management with Load Prioritizations in Modern Civil Aircraft

Any use of energy in industrial productive activities is combined with various environment impacts. Withintransportation, this fact was not only found among land transport, railways and maritime transport, but also in the air transport industry. An effective climate protection requires strategies and measures for reducing all greenhouses gas emissions, in particular carbon dioxide, and must take into account the economic, ecologic and social aspects. It seem simperative now to develop and manufacture environmentally friendly products and systems, to reduce consumption and use less resource, and to save energy and power. Today-sproducts could better serve these requirements taking into account the integration of a power management system into the electrical power system.This paper gives an overview of an approach ofpower management with load prioritization in modernaircraft. Load dimensioning and load management strategies on current civil aircraft will be presented and used as a basis for the proposed approach.

Accounting Research from the Globalization Perspective

This paper explores the idea of globalisation and considers accounting-s role in that process in order to develop new spaces for accounting research. That-s why in this paper we are looking for questions not necessary for answers. Adopting an 'alternative' view of accounting it-s related to the fact that we sees accounting as social and evolutionist process, that pays heed to those voices arguing for greater social and environmental justice, and that draws attention to the role of accounting researchers in the process of globalisation. The paper defines globalisation and expands the globalisation and accounting research agenda introducing in this context the harmonization process in accounting. There are the two main systems which are disputing the first stage of being the benchmark: GAAP and IFRS. Each of them has his pluses and minuses on being the selected one. Due to this fact a convergence of the two, joining the advantages and disadvantages of the two should be the solution for an unique international accounting solution. Is this idea realizable, what steps has been made until now, what should be done in the future. The paper is emphasising the role of the cultural differences in the process of imposing of an unique international accounting system by the global organizations..