Design of an Intelligent Tutor using a Multiagent Approach

Research in distributed artificial intelligence and multiagent systems consider how a set of distributed entities can interact and coordinate their actions in order to solve a given problem. In this paper an overview of this concept and its evolution is presented particularly its application in the design of intelligent tutoring systems. An intelligent tutor based on the concept of agent and centered specifically on the design of a pedagogue agent is illustrated. Our work has two goals: the first one concerns the architecture aspect and the design of a tutor using multiagent approach. The second one deals particularly with the design of a part of a tutor system: the pedagogue agent.

Sustainability of Urban Cemeteries and the Transformation of Malay Burial Practices in Kuala Lumpur Metropolitan Region

Land shortage for burials is one of many issues that emerge out of accelerated urban growth in most developing Asian cities, including Kuala Lumpur. Despite actions taken by the federal government and local authorities in addressing this issue, there is no strategic solution being formulated. Apart from making provisions for land to be developed as new cemeteries, the future plan is merely to allocate reserve land to accommodate the increasing demands of burial grounds around the city. This paper examines problems that arise from the traditional practices of Malay funerary as well as an insight to current urban practices in managing Muslim burial spaces around Kuala Lumpur metropolitan region. This paper will also provide some solutions through design approach that can be applied to counter the existing issues.

Trajectory Control of a Robotic Manipulator Utilizing an Adaptive Fuzzy Sliding Mode

In this paper, a novel adaptive fuzzy sliding mode control method is proposed for the robust tracking control of robotic manipulators. The proposed controller possesses the advantages of adaptive control, fuzzy control, and sliding mode control. First, system stability and robustness are guaranteed based on the sliding mode control. Further, fuzzy rules are developed incorporating with adaptation law to alleviate the input chattering effectively. Stability of the control system is proven by using the Lyapunov method. An application to a three-degree-of-freedom robotic manipulator is carried out. Accurate trajectory tracking as well as robustness is achieved. Input chattering is greatly eliminated.

System Identification and Control the Azimuth Angle of the Platform of MLRS by PID Controller

This paper presents the system identification by physical-s law method and designs the controller for the Azimuth Angle Control of the Platform of the Multi-Launcher Rocket System (MLRS) by Root Locus technique. The plant mathematical model was approximated using MATLAB for simulation and analyze the system. The controller proposes the implementation of PID Controller using Programmable Logic Control (PLC) for control the plant. PID Controllers are widely applicable in industrial sectors and can be set up easily and operate optimally for enhanced productivity, improved quality and reduce maintenance requirement. The results from simulation and experiments show that the proposed a PID Controller to control the elevation angle that has superior control performance by the setting time less than 12 sec, the rise time less than 1.6 sec., and zero steady state. Furthermore, the system has a high over shoot that will be continue development.

Optimization of Double Wishbone Suspension System with Variable Camber Angle by Hydraulic Mechanism

Simulation accuracy by recent dynamic vehicle simulation multidimensional expression significantly has progressed and acceptable results not only for passive vehicles but also for active vehicles normally equipped with advanced electronic components is also provided. Recently, one of the subjects that has it been considered, is increasing the safety car in design. Therefore, many efforts have been done to increase vehicle stability especially in the turn. One of the most important efforts is adjusting the camber angle in the car suspension system. Optimum control camber angle in addition to the vehicle stability is effective in the wheel adhesion on road, reducing rubber abrasion and acceleration and braking. Since the increase or decrease in the camber angle impacts on the stability of vehicles, in this paper, a car suspension system mechanism is introduced that could be adjust camber angle and the mechanism is application and also inexpensive. In order to reach this purpose, in this paper, a passive double wishbone suspension system with variable camber angle is introduced and then variable camber mechanism designed and analyzed for study the designed system performance, this mechanism is modeled in Visual Nastran software and kinematic analysis is revealed.

Nonlinear Acoustic Echo Cancellation Using Volterra Filtering with a Variable Step-Size GS-PAP Algorithm

In this paper, a nonlinear acoustic echo cancellation (AEC) system is proposed, whereby 3rd order Volterra filtering is utilized along with a variable step-size Gauss-Seidel pseudo affine projection (VSSGS-PAP) algorithm. In particular, the proposed nonlinear AEC system is developed by considering a double-talk situation with near-end signal variation. Simulation results demonstrate that the proposed approach yields better nonlinear AEC performance than conventional approaches.

Structure of Covering-based Rough Sets

Rough set theory is a very effective tool to deal with granularity and vagueness in information systems. Covering-based rough set theory is an extension of classical rough set theory. In this paper, firstly we present the characteristics of the reducible element and the minimal description covering-based rough sets through downsets. Then we establish lattices and topological spaces in coveringbased rough sets through down-sets and up-sets. In this way, one can investigate covering-based rough sets from algebraic and topological points of view.

Application of Smart Temperature Information Material for The Evaluation of Heat Storage Capacity and Insulation Capacity of Exterior Walls

The heat storage capacity of concrete in building shells is a major reason for excessively large electricity consumption induced by indoor air conditioning. In this research, the previously developed Smart Temperature Information Material (STIM) is embedded in two groups of exterior wall specimens (the control group contains reinforced concrete exterior walls and the experimental group consists of tiled exterior walls). Long term temperature measurements within the concrete are taken by the embedded STIM. Temperature differences between the control group and the experimental group in walls facing the four cardinal directions (east, west, south, and north) are evaluated. This study aims to provide a basic reference for the design of exterior walls and the selection of heat insulation materials.

Design of Encoding Calculator Software for Huffman and Shannon-Fano Algorithms

This paper presents a design of source encoding calculator software which applies the two famous algorithms in the field of information theory- the Shannon-Fano and the Huffman schemes. This design helps to easily realize the algorithms without going into a cumbersome, tedious and prone to error manual mechanism of encoding the signals during the transmission. The work describes the design of the software, how it works, comparison with related works, its efficiency, its usefulness in the field of information technology studies and the future prospects of the software to engineers, students, technicians and alike. The designed “Encodia" software has been developed, tested and found to meet the intended requirements. It is expected that this application will help students and teaching staff in their daily doing of information theory related tasks. The process is ongoing to modify this tool so that it can also be more intensely useful in research activities on source coding.

Image Enhancement of Medical Images using Gabor Filter Bank on Hexagonal Sampled Grids

For about two decades scientists have been developing techniques for enhancing the quality of medical images using Fourier transform, DWT (Discrete wavelet transform),PDE model etc., Gabor wavelet on hexagonal sampled grid of the images is proposed in this work. This method has optimal approximation theoretic performances, for a good quality image. The computational cost is considerably low when compared to similar processing in the rectangular domain. As X-ray images contain light scattered pixels, instead of unique sigma, the parameter sigma of 0.5 to 3 is found to satisfy most of the image interpolation requirements in terms of high Peak Signal-to-Noise Ratio (PSNR) , lower Mean Squared Error (MSE) and better image quality by adopting windowing technique.

Applications of AUSM+ Scheme on Subsonic, Supersonic and Hypersonic Flows Fields

The performance of Advection Upstream Splitting Method AUSM schemes are evaluated against experimental flow fields at different Mach numbers and results are compared with experimental data of subsonic, supersonic and hypersonic flow fields. The turbulent model used here is SST model by Menter. The numerical predictions include lift coefficient, drag coefficient and pitching moment coefficient at different mach numbers and angle of attacks. This work describes a computational study undertaken to compute the Aerodynamic characteristics of different air vehicles configurations using a structured Navier-Stokes computational technique. The CFD code bases on the idea of upwind scheme for the convective (convective-moving) fluxes. CFD results for GLC305 airfoil and cone cylinder tail fined missile calculated on above mentioned turbulence model are compared with the available data. Wide ranges of Mach number from subsonic to hypersonic speeds are simulated and results are compared. When the computation is done by using viscous turbulence model the above mentioned coefficients have a very good agreement with the experimental values. AUSM scheme is very efficient in the regions of very high pressure gradients like shock waves and discontinuities. The AUSM versions simulate the all types of flows from lower subsonic to hypersonic flow without oscillations.

Novel D- glucose Based Glycomonomers Synthesis and Characterization

In the last decade, carbohydrates have attracted great attention as renewable resources for the chemical industry. Carbohydrates are abundantly found in nature in the form of monomers, oligomers and polymers, or as components of biopolymers and other naturally occurring substances. As natural products, they play important roles in conferring certain physical, chemical, and biological properties to their carrier molecules.The synthesis of this particular carbohydrate glycomonomer is part of our work to obtain biodegradable polymers. Our current paper describes the synthesis and characterization of a novel carbohydrate glycomonomer starting from D-glucose, in several synthesis steps, that involve the protection/deprotection of the D-glucose ring via acetylation, tritylation, then selective deprotection of the aromaticaliphatic protective group, in order to obtain 1,2,3,4-tetra-O-acetyl- 6-O-allyl-β-D-glucopyranose. The glycomonomer was then obtained by the allylation in drastic conditions of 1,2,3,4-tetra-O-acetyl-6-Oallyl- β-D-glucopyranose with allylic alcohol in the presence of stannic chloride, in methylene chloride, at room temperature. The proposed structure of the glycomonomer, 2,3,4-tri-O-acetyl-1,6-di- O-allyl-β-D-glucopyranose, was confirmed by FTIR, NMR and HPLC-MS spectrometry. This glycomonomer will be further submitted to copolymerization with certain acrylic or methacrylic monomers in order to obtain competitive plastic materials for applications in the biomedical field.

A Content Based Image Watermarking Scheme Resilient to Geometric Attacks

Multimedia security is an incredibly significant area of concern. The paper aims to discuss a robust image watermarking scheme, which can withstand geometric attacks. The source image is initially moment normalized in order to make it withstand geometric attacks. The moment normalized image is wavelet transformed. The first level wavelet transformed image is segmented into blocks if size 8x8. The product of mean and standard and standard deviation of each block is computed. The second level wavelet transformed image is divided into 8x8 blocks. The product of block mean and the standard deviation are computed. The difference between products in the two levels forms the watermark. The watermark is inserted by modulating the coefficients of the mid frequencies. The modulated image is inverse wavelet transformed and inverse moment normalized to generate the watermarked image. The watermarked image is now ready for transmission. The proposed scheme can be used to validate identification cards and financial instruments. The performance of this scheme has been evaluated using a set of parameters. Experimental results show the effectiveness of this scheme.

The Use of a Tactical Simulator as a Learning Resource at the Norwegian Military Academy

The Norwegian Military Academy (Army) has been using a tactical simulator for the last two years. During this time there has been some discussion concerning how to use the simulator most efficiently and what type of learning one achieves by using the simulator. The problem that is addressed in this paper is how simulators can be used as a learning resource for students concerned with developing their military profession. The aim of this article is to create a wider consciousness regarding the use of a simulator while educating officers in a military profession. The article discusses the use of simulators from two different perspectives. The first perspective deals with using the simulator as a computer game, and the second perspective looks at the simulator as a socio-cultural artefact. Furthermore the article discusses four different ways the simulator can be looked upon as a useful learning resource when educating students of a military profession.

Attenuation in Transferred RF Power to a Biomedical Implant due to the Absorption of Biological Tissue

In a transcutanious inductive coupling of a biomedical implant, a new formula is given for the study of the Radio Frequency power attenuation by the biological tissue. The loss of the signal power is related to its interaction with the biological tissue and the composition of this one. A confrontation with the practical measurements done with a synthetic muscle into a Faraday cage, allowed a checking of the obtained theoretical results. The supply/data transfer systems used in the case of biomedical implants, can be well dimensioned by taking in account this type of power attenuation.

ClassMATE: Enabling Ambient Intelligence in the Classroom

Ambient Intelligence (AmI) environments bring significant potential to exploit sophisticated computer technology in everyday life. In particular, the educational domain could be significantly enhanced through AmI, as personalized and adapted learning could be transformed from paper concepts and prototypes to real-life scenarios. In this paper, an integrated framework is presented, named ClassMATE, supporting ubiquitous computing and communication in a school classroom. The main objective of ClassMATE is to enable pervasive interaction and context aware education in the technologically augmented classroom of the future.

Adaptive Image Transmission with P-V Diversity in Multihop Wireless Mesh Networks

Multirate multimedia delivery applications in multihop Wireless Mesh Network (WMN) are data redundant and delay-sensitive, which brings a lot of challenges for designing efficient transmission systems. In this paper, we propose a new cross layer resource allocation scheme to minimize the receiver side distortion within the delay bound requirements, by exploring application layer Position and Value (P-V) diversity as well as the multihop Effective Capacity (EC). We specifically consider image transmission optimization here. First of all, the maximum supportable source traffic rate is identified by exploring the multihop Effective Capacity (EC) model. Furthermore, the optimal source coding rate is selected according to the P-V diversity of multirate media streaming, which significantly increases the decoded media quality. Simulation results show the proposed approach improved media quality significantly compared with traditional approaches under the same QoS requirements.

Evaluation of Efficient CSI Based Channel Feedback Techniques for Adaptive MIMO-OFDM Systems

This paper explores the implementation of adaptive coding and modulation schemes for Multiple-Input Multiple-Output Orthogonal Frequency Division Multiplexing (MIMO-OFDM) feedback systems. Adaptive coding and modulation enables robust and spectrally-efficient transmission over time-varying channels. The basic premise is to estimate the channel at the receiver and feed this estimate back to the transmitter, so that the transmission scheme can be adapted relative to the channel characteristics. Two types of codebook based channel feedback techniques are used in this work. The longterm and short-term CSI at the transmitter is used for efficient channel utilization. OFDM is a powerful technique employed in communication systems suffering from frequency selectivity. Combined with multiple antennas at the transmitter and receiver, OFDM proves to be robust against delay spread. Moreover, it leads to significant data rates with improved bit error performance over links having only a single antenna at both the transmitter and receiver. The coded modulation increases the effective transmit power relative to uncoded variablerate variable-power MQAM performance for MIMO-OFDM feedback system. Hence proposed arrangement becomes an attractive approach to achieve enhanced spectral efficiency and improved error rate performance for next generation high speed wireless communication systems.

Emotion Dampening Strategy and Internalizing Problem Behavior: Affect Intensity as Control Variables

Contrary to negative emotion regulation, coping with positive moods have received less attention in adolescent adjustment. However, some research has found that everyone is different on dealing with their positive emotions, which affects their adaptation and well-being. The purpose of the present study was to investigate the relationship between positive emotions dampening and internalizing behavior problems of adolescent in Taiwan. A survey was conducted and 208 students (12 to14 years old) completed the strengths and difficulties questionnaire (SDQ), the Affect Intensity Measure, and the positive emotions dampening scale. Analysis methods such as descriptive statistics, t-test, Pearson correlations and multiple regression were adapted. The results were as follows: Emotionality and internalizing problem behavior have significant gender differences. Compared to boys, girls have a higher score on negative emotionality and are at a higher risk for internalizing symptoms. However, there are no gender differences on positive emotion dampening. Additionally, in the circumstance that negative emotionality acted as the control variable, positive emotion dampening strategy was (positive) related to internalizing behavior problems. Given the results of this study, it is suggested that coaching deconstructive positive emotion strategies is to assist adolescents with internalizing behavior problems is encouraged.

Design of a Hybrid Fuel Cell with Battery Energy Storage for Stand-Alone Distributed Generation Applications

This paper presents the modeling and simulation of a hybrid proton exchange membrane fuel cell (PEMFC) with an energy storage system for use in a stand-alone distributed generation (DG) system. The simulation model consists of fuel cell DG, lead-acid battery, maximum power point tracking and power conditioning unit which is modeled in the MATLAB/Simulink platform. Poor loadfollowing characteristics and slow response to rapid load changes are some of the weaknesses of PEMFC because of the gas processing reaction and the fuel cell dynamics. To address the load-tracking issues in PEMFC, a hybrid PEMFC and battery storage system is considered and modelled. The model utilizes PEMFC as the main energy source whereas the battery functions as energy storage to compensate for the limitations of PEMFC.Simulation results are given to show the overall system performance under light and heavyloading conditions.