A New Pattern for Handwritten Persian/Arabic Digit Recognition

The main problem for recognition of handwritten Persian digits using Neural Network is to extract an appropriate feature vector from image matrix. In this research an asymmetrical segmentation pattern is proposed to obtain the feature vector. This pattern can be adjusted as an optimum model thanks to its one degree of freedom as a control point. Since any chosen algorithm depends on digit identity, a Neural Network is used to prevail over this dependence. Inputs of this Network are the moment of inertia and the center of gravity which do not depend on digit identity. Recognizing the digit is carried out using another Neural Network. Simulation results indicate the high recognition rate of 97.6% for new introduced pattern in comparison to the previous models for recognition of digits.

Differences in Goal Scoring and Passing Sequences between Winning and Losing Team in UEFA-EURO Championship 2012

The objective of current study is to investigate the differences of winning and losing teams in terms of goal scoring and passing sequences. Total of 31 matches from UEFA-EURO 2012 were analyzed and 5 matches were excluded from analysis due to matches end up drawn. There are two groups of variable used in the study which is; i. the goal scoring variable and: ii. passing sequences variable. Data were analyzed using Wilcoxon matched pair rank test with significant value set at p < 0.05. Current study found the timing of goal scored was significantly higher for winning team at 1st half (Z=-3.416, p=.001) and 2nd half (Z=-3.252, p=.001). The scoring frequency was also found to be increase as time progressed and the last 15 minutes of the game was the time interval the most goals scored. The indicators that were significantly differences between winning and losing team were the goal scored (Z=-4.578, p=.000), the head (Z=-2.500, p=.012), the right foot (Z=-3.788,p=.000), corner (Z=-.2.126,p=.033), open play (Z=-3.744,p=.000), inside the penalty box (Z=-4.174, p=.000) , attackers (Z=-2.976, p=.003) and also the midfielders (Z=-3.400, p=.001). Regarding the passing sequences, there are significance difference between both teams in short passing sequences (Z=-.4.141, p=.000). While for the long passing, there were no significance difference (Z=-.1.795, p=.073). The data gathered in present study can be used by the coaches to construct detailed training program based on their objectives.

Application of Adaptive Neuro-Fuzzy Inference System in Smoothing Transition Autoregressive Models

In this paper we propose and examine an Adaptive Neuro-Fuzzy Inference System (ANFIS) in Smoothing Transition Autoregressive (STAR) modeling. Because STAR models follow fuzzy logic approach, in the non-linear part fuzzy rules can be incorporated or other training or computational methods can be applied as the error backpropagation algorithm instead to nonlinear squares. Furthermore, additional fuzzy membership functions can be examined, beside the logistic and exponential, like the triangle, Gaussian and Generalized Bell functions among others. We examine two macroeconomic variables of US economy, the inflation rate and the 6-monthly treasury bills interest rates.

On Enhancing Robustness of an Evolutionary Fuzzy Tracking Controller

This paper presents three-phase evolution search methodology to automatically design fuzzy logic controllers (FLCs) that can work in a wide range of operating conditions. These include varying load, parameter variations, and unknown external disturbances. The three-phase scheme consists of an exploration phase, an exploitation phase and a robustness phase. The first two phases search for FLC with high accuracy performances while the last phase aims at obtaining FLC providing the best compromise between the accuracy and robustness performances. Simulations were performed for direct-drive two-axis robot arm. The evolved FLC with the proposed design technique found to provide a very satisfactory performance under the wide range of operation conditions and to overcome problem associated with coupling and nonlinearities characteristics inherent to robot arms.

Assessing and Visualizing the Stability of Feature Selectors: A Case Study with Spectral Data

Feature selection plays an important role in applications with high dimensional data. The assessment of the stability of feature selection/ranking algorithms becomes an important issue when the dataset is small and the aim is to gain insight into the underlying process by analyzing the most relevant features. In this work, we propose a graphical approach that enables to analyze the similarity between feature ranking techniques as well as their individual stability. Moreover, it works with whatever stability metric (Canberra distance, Spearman's rank correlation coefficient, Kuncheva's stability index,...). We illustrate this visualization technique evaluating the stability of several feature selection techniques on a spectral binary dataset. Experimental results with a neural-based classifier show that stability and ranking quality may not be linked together and both issues have to be studied jointly in order to offer answers to the domain experts.

No one Set of Parameter Values Can Simulate the Epidemics Due to SARS Occurring at Different Localities

A mathematical model for the transmission of SARS is developed. In addition to dividing the population into susceptible (high and low risk), exposed, infected, quarantined, diagnosed and recovered classes, we have included a class called untraced. The model simulates the Gompertz curves which are the best representation of the cumulative numbers of probable SARS cases in Hong Kong and Singapore. The values of the parameters in the model which produces the best fit of the observed data for each city are obtained by using a differential evolution algorithm. It is seen that the values for the parameters needed to simulate the observed daily behaviors of the two epidemics are different.

Synchronization of Chaos in a Food Web in Ecological Systems

The three-species food web model proposed and investigated by Gakkhar and Naji is known to have chaotic behaviour for a choice of parameters. An attempt has been made to synchronize the chaos in the model using bidirectional coupling. Numerical simulations are presented to demonstrate the effectiveness and feasibility of the analytical results. Numerical results show that for higher value of coupling strength, chaotic synchronization is achieved. Chaos can be controlled to achieve stable synchronization in natural systems.

Scalable Deployment and Configuration of High-Performance Virtual Clusters

Virtualization and high performance computing have been discussed from a performance perspective in recent publications. We present and discuss a flexible and efficient approach to the management of virtual clusters. A virtual machine management tool is extended to function as a fabric for cluster deployment and management. We show how features such as saving the state of a running cluster can be used to avoid disruption. We also compare our approach to the traditional methods of cluster deployment and present benchmarks which illustrate the efficiency of our approach.

Human Face Detection and Segmentation using Eigenvalues of Covariance Matrix, Hough Transform and Raster Scan Algorithms

In this paper we propose a novel method for human face segmentation using the elliptical structure of the human head. It makes use of the information present in the edge map of the image. In this approach we use the fact that the eigenvalues of covariance matrix represent the elliptical structure. The large and small eigenvalues of covariance matrix are associated with major and minor axial lengths of an ellipse. The other elliptical parameters are used to identify the centre and orientation of the face. Since an Elliptical Hough Transform requires 5D Hough Space, the Circular Hough Transform (CHT) is used to evaluate the elliptical parameters. Sparse matrix technique is used to perform CHT, as it squeeze zero elements, and have only a small number of non-zero elements, thereby having an advantage of less storage space and computational time. Neighborhood suppression scheme is used to identify the valid Hough peaks. The accurate position of the circumference pixels for occluded and distorted ellipses is identified using Bresenham-s Raster Scan Algorithm which uses the geometrical symmetry properties. This method does not require the evaluation of tangents for curvature contours, which are very sensitive to noise. The method has been evaluated on several images with different face orientations.

Integrating PZB Model and TRIZ for Service Innovation of Tele-Healthcare

Due to the rise of aging population, effective utilization of healthcare resources has become an important issue. With the advance of ICT technology, the application of tele-healthcare service has received more attention than ever. The main purpose of this research is to investigate how to conduct innovative design for tele-healthcare service based on user-s perspectives. First, the healthcare service blueprint was used to describe the processes of tele-healthcare service delivery, and then construct PZB service quality gap model based on the literature and practitioners- interviews. Next, TRIZ theory is applied to implement service innovation. We found the proposed service innovation procedures can effectively improve the quality of service design.

Consumer Insolvency in the Czech Republic

The Czech Republic is a country whose economy has undergone a transformation since 1989. Since joining the EU it has been striving to reduce the differences in its economic standard and the quality of its institutional environment in comparison with developed countries. According to an assessment carried out by the World Bank, the Czech Republic was long classed as a country whose institutional development was seen as problematic. For many years one of the things it was rated most poorly on was its bankruptcy law. The new Insolvency Act, which is a modern law in terms of its treatment of bankruptcy, was first adopted in the Czech Republic in 2006. This law, together with other regulatory measures, offers debtridden Czech economic subjects legal instruments which are well established and in common practice in developed market economies. Since then, analyses performed by the World Bank and the London EBRD have shown that there have been significant steps forward in the quality of Czech bankruptcy law. The Czech Republic still lacks an analytical apparatus which can offer a structured characterisation of the general and specific conditions of Czech company and household debt which is subject to current changes in the global economy. This area has so far not been given the attention it deserves. The lack of research is particularly clear as regards analysis of household debt and householders- ability to settle their debts in a reasonable manner using legal and other state means of regulation. We assume that Czech households have recourse to a modern insolvency law, yet the effective application of this law is hampered by the inconsistencies in the formal and informal institutions involved in resolving debt. This in turn is based on the assumption that this lack of consistency is more marked in cases of personal bankruptcy. Our aim is to identify the symptoms which indicate that for some time the effective application of bankruptcy law in the Czech Republic will be hindered by factors originating in householders- relative inability to identify the risks of falling into debt.

Efficient Realization of an ADFE with a New Adaptive Algorithm

Decision feedback equalizers are commonly employed to reduce the error caused by intersymbol interference. Here, an adaptive decision feedback equalizer is presented with a new adaptation algorithm. The algorithm follows a block-based approach of normalized least mean square (NLMS) algorithm with set-membership filtering and achieves a significantly less computational complexity over its conventional NLMS counterpart with set-membership filtering. It is shown in the results that the proposed algorithm yields similar type of bit error rate performance over a reasonable signal to noise ratio in comparison with the latter one.

Measuring Perceived Service Quality for Intelligent Living Space Showroom – Living 3.0 in Taiwan

This research explores visitor-s expectations of service quality in intelligent living space showroom – Living 3.0 in Taiwan. Based on the five dimensions of PZB service quality, a specialist questionnaire is utilized to establish a complete service quality evaluation framework for Living 3.0. In this research, analysis hierarchy process (AHP) is applied to find the relative weights among the criteria. Finally, the service quality evaluation framework and evaluation results can be used as a guide for Living 3.0 proprietors to review, improve, and enhance service planning and service qualities in the future.

In vitro Propagation of Purple Nutsedge (Cyperus rotundus L.) for Useful Chemical Extraction

The in vitro culture procedure of purple nutsedge (Cyperus rotundus L.) for multiple shoot induction and tuber formation was established. Multiple shoots were significantly induced from a single shoot of about 0.5 – 0.8 cm long, on Murashige and Skoog (MS) medium supplemented with 4.44 μM 6- benzyladinine (BA) alone or in combination with 2.85 μM 1- indoleacetic acid (IAA), providing 17.6 and 15.3 shoots per explant with 31.2 and 27.5 leaves per explant, respectively, within 6 weeks of culturing. Moreover, MS medium supplemented with 4.44 μM BA and 2.85 μM IAA was suitable for tuber induction, obtaining 5.9 tubers with 3.4 rhizomes per explant. In combination with ancymidol and higher concentration of sucrose, 11.1 μM BA and 60 g/L sucrose or 11.1 μM BA, 7.8 μM ancymidol and 60 g/L sucrose induced 3.5 tubers with 1.6 rhizomes or 3.5 tubers without rhizome, respectively. However, MS medium containing 3.9 or 7.8 μM ancymidol in combination with either 60 or 80 g/L sucrose enchanced significant root formation at 20.9 – 23.6 roots per explant.

Turbine Follower Control Strategy Design Based on Developed FFPP Model

In this paper a comprehensive model of a fossil fueled power plant (FFPP) is developed in order to evaluate the performance of a newly designed turbine follower controller. Considering the drawbacks of previous works, an overall model is developed to minimize the error between each subsystem model output and the experimental data obtained at the actual power plant. The developed model is organized in two main subsystems namely; Boiler and Turbine. Considering each FFPP subsystem characteristics, different modeling approaches are developed. For economizer, evaporator, superheater and reheater, first order models are determined based on principles of mass and energy conservation. Simulations verify the accuracy of the developed models. Due to the nonlinear characteristics of attemperator, a new model, based on a genetic-fuzzy systems utilizing Pittsburgh approach is developed showing a promising performance vis-à-vis those derived with other methods like ANFIS. The optimization constraints are handled utilizing penalty functions. The effect of increasing the number of rules and membership functions on the performance of the proposed model is also studied and evaluated. The turbine model is developed based on the equation of adiabatic expansion. Parameters of all evaluated models are tuned by means of evolutionary algorithms. Based on the developed model a fuzzy PI controller is developed. It is then successfully implemented in the turbine follower control strategy of the plant. In this control strategy instead of keeping control parameters constant, they are adjusted on-line with regard to the error and the error rate. It is shown that the response of the system improves significantly. It is also shown that fuel consumption decreases considerably.

Texture Feature Extraction of Infrared River Ice Images using Second-Order Spatial Statistics

Ice cover County has a significant impact on rivers as it affects with the ice melting capacity which results in flooding, restrict navigation, modify the ecosystem and microclimate. River ices are made up of different ice types with varying ice thickness, so surveillance of river ice plays an important role. River ice types are captured using infrared imaging camera which captures the images even during the night times. In this paper the river ice infrared texture images are analysed using first-order statistical methods and secondorder statistical methods. The second order statistical methods considered are spatial gray level dependence method, gray level run length method and gray level difference method. The performance of the feature extraction methods are evaluated by using Probabilistic Neural Network classifier and it is found that the first-order statistical method and second-order statistical method yields low accuracy. So the features extracted from the first-order statistical method and second-order statistical method are combined and it is observed that the result of these combined features (First order statistical method + gray level run length method) provides higher accuracy when compared with the features from the first-order statistical method and second-order statistical method alone.

Anti-Money Laundering Requirements – Perceived Effectiveness

Anti-money laundering is commonly recognized as a set of procedures, laws or regulations designed to reduce the practice of generating income through illegal actions. In Malaysia, the government and law enforcement agencies have stepped up their capacities and efforts to curb money laundering since 2001. One of these measures was the enactment of the Anti-Money Laundering Act (AMLA) in 2001. The implementation costs on anti-money laundering requirements (AMLR) can be burdensome to those who are involved in enforcing them. The objective of this paper is to explore the perceived effectiveness of AMLR from the enforcement agencies- perspective. This is a preliminary study whose findings will help to give direction for further AML research in Malaysia. In addition, the results of this study provide empirical evidences on the perceived effectiveness of AMLR prior to further investigations on barriers and improvements of the implementation of the anti-money laundering regime in Malaysia.

Multimodal Biometric System Based on Near- Infra-Red Dorsal Hand Geometry and Fingerprints for Single and Whole Hands

Prior research evidenced that unimodal biometric systems have several tradeoffs like noisy data, intra-class variations, restricted degrees of freedom, non-universality, spoof attacks, and unacceptable error rates. In order for the biometric system to be more secure and to provide high performance accuracy, more than one form of biometrics are required. Hence, the need arise for multimodal biometrics using combinations of different biometric modalities. This paper introduces a multimodal biometric system (MMBS) based on fusion of whole dorsal hand geometry and fingerprints that acquires right and left (Rt/Lt) near-infra-red (NIR) dorsal hand geometry (HG) shape and (Rt/Lt) index and ring fingerprints (FP). Database of 100 volunteers were acquired using the designed prototype. The acquired images were found to have good quality for all features and patterns extraction to all modalities. HG features based on the hand shape anatomical landmarks were extracted. Robust and fast algorithms for FP minutia points feature extraction and matching were used. Feature vectors that belong to similar biometric traits were fused using feature fusion methodologies. Scores obtained from different biometric trait matchers were fused using the Min-Max transformation-based score fusion technique. Final normalized scores were merged using the sum of scores method to obtain a single decision about the personal identity based on multiple independent sources. High individuality of the fused traits and user acceptability of the designed system along with its experimental high performance biometric measures showed that this MMBS can be considered for med-high security levels biometric identification purposes.

Implementation of a Reed-Solomon Code as an ECC in Yet Another Flash File System

Flash memory has become an important storage device in many embedded systems because of its high performance, low power consumption and shock resistance. Multi-level cell (MLC) is developed as an effective solution for reducing the cost and increasing the storage density in recent years. However, most of flash file system cannot handle the error correction sufficiently. To correct more errors for MLC, we implement Reed-Solomon (RS) code to YAFFS, what is widely used for flash-based file system. RS code has longer computing time but the correcting ability is much higher than that of Hamming code.

Automatic Segmentation of Thigh Magnetic Resonance Images

Purpose: To develop a method for automatic segmentation of adipose and muscular tissue in thighs from magnetic resonance images. Materials and methods: Thirty obese women were scanned on a Siemens Impact Expert 1T resonance machine. 1500 images were finally used in the tests. The developed segmentation method is a recursive and multilevel process that makes use of several concepts such as shaped histograms, adaptative thresholding and connectivity. The segmentation process was implemented in Matlab and operates without the need of any user interaction. The whole set of images were segmented with the developed method. An expert radiologist segmented the same set of images following a manual procedure with the aid of the SliceOmatic software (Tomovision). These constituted our 'goal standard'. Results: The number of coincidental pixels of the automatic and manual segmentation procedures was measured. The average results were above 90 % of success in most of the images. Conclusions: The proposed approach allows effective automatic segmentation of MRIs from thighs, comparable to expert manual performance.