Tool Wear of Metal Matrix Composite 10wt% AlN Reinforcement Using TiB2 Cutting Tool

Metal matrix composites (MMCs) attract considerable attention as a result from its ability in providing a high strength, high modulus, high toughness, high impact properties, improving wear resistance and providing good corrosion resistance compared to unreinforced alloy. Aluminium Silicon (Al/Si) alloy MMC has been widely used in various industrial sectors such as in transportation, domestic equipment, aerospace, military, construction, etc. Aluminium silicon alloy is an MMC that had been reinforced with aluminium nitrate (AlN) particle and become a new generation material use in automotive and aerospace sector. The AlN is one of the advance material that have a bright prospect in future since it has features such as lightweight, high strength, high hardness and stiffness quality. However, the high degree of ceramic particle reinforcement and the irregular nature of the particles along the matrix material that contribute to its low density is the main problem which leads to difficulties in machining process. This paper examined the tool wear when milling AlSi/AlN Metal Matrix Composite using a TiB2 (Titanium diboride) coated carbide cutting tool. The volume of the AlN reinforced particle was 10% and milling process was carried out under dry cutting condition. The TiB2 coated carbide insert parameters used were at the cutting speed of (230, 300 and 370m/min, feed rate of 0.8, Depth of Cut (DoC) at 0.4m). The Sometech SV-35 video microscope system used to quantify of the tool wear. The result shown that tool life span increasing with the cutting speeds at (370m/min, feed rate of 0.8mm/tooth and DoC at 0.4mm) which constituted an optimum condition for longer tool life lasted until 123.2 mins. Meanwhile, at medium cutting speed which at 300m/m, feed rate of 0.8mm/tooth and depth of cut at 0.4mm we found that tool life span lasted until 119.86 mins while at low cutting speed it lasted in 119.66 mins. High cutting speed will give the best parameter in cutting AlSi/AlN MMCs material. The result will help manufacturers in machining process of AlSi/AlN MMCs materials.

Anti-Money Laundering Requirements – Perceived Effectiveness

Anti-money laundering is commonly recognized as a set of procedures, laws or regulations designed to reduce the practice of generating income through illegal actions. In Malaysia, the government and law enforcement agencies have stepped up their capacities and efforts to curb money laundering since 2001. One of these measures was the enactment of the Anti-Money Laundering Act (AMLA) in 2001. The implementation costs on anti-money laundering requirements (AMLR) can be burdensome to those who are involved in enforcing them. The objective of this paper is to explore the perceived effectiveness of AMLR from the enforcement agencies- perspective. This is a preliminary study whose findings will help to give direction for further AML research in Malaysia. In addition, the results of this study provide empirical evidences on the perceived effectiveness of AMLR prior to further investigations on barriers and improvements of the implementation of the anti-money laundering regime in Malaysia.