Optimal Maintenance Policy for a Partially Observable Two-Unit System

In this paper, we present a maintenance model of a two-unit series system with economic dependence. Unit#1 which is considered to be more expensive and more important, is subject to condition monitoring (CM) at equidistant, discrete time epochs and unit#2, which is not subject to CM has a general lifetime distribution. The multivariate observation vectors obtained through condition monitoring carry partial information about the hidden state of unit#1, which can be in a healthy or a warning state while operating. Only the failure state is assumed to be observable for both units. The objective is to find an optimal opportunistic maintenance policy minimizing the long-run expected average cost per unit time. The problem is formulated and solved in the partially observable semi-Markov decision process framework. An effective computational algorithm for finding the optimal policy and the minimum average cost is developed, illustrated by a numerical example.

Integration Methods and Processes of Product Design and Flexible Production for Direct Production within the iCIM 3000 System

Currently is characterized production engineering together with the integration of industrial automation and robotics such very quick view of to manufacture the products. The production range is continuously changing, expanding and producers have to be flexible in this regard. It means that need to offer production possibilities, which can respond to the quick change. Engineering product development is focused on supporting CAD software, such systems are mainly used for product design. That manufacturers are competitive, it should be kept procured machines made available capable of responding to output flexibility. In response to that problem is the development of flexible manufacturing systems, consisting of various automated systems. The integration of flexible manufacturing systems and subunits together with product design and of engineering is a possible solution for this issue. Integration is possible through the implementation of CIM systems. Such a solution and finding a hyphen between CAD and procurement system ICIM 3000 from Festo Co. is engaged in the research project and this contribution. This can be designed the products in CAD systems and watch the manufacturing process from order to shipping by the development of methods and processes of integration, This can be modeled in CAD systems products and watch the manufacturing process from order to shipping to develop methods and processes of integration, which will improve support for product design parameters by monitoring of the production process, by creating of programs for production using the CAD and therefore accelerates the a total of process from design to implementation.

Traveling Wave Solutions for the (3+1)-Dimensional Breaking Soliton Equation by (G'/G)- Expansion Method and Modified F-Expansion Method

In this paper, using (G/G )-expansion method and modified F-expansion method, we give some explicit formulas of exact traveling wave solutions for the (3+1)-dimensional breaking soliton equation. A modified F-expansion method is proposed by taking full advantages of F-expansion method and Riccati equation in seeking exact solutions of the equation.

Rheological and Thermomechanical Properties of Graphene/ABS/PP Nanocomposites

In the present study, the incorporation of graphene into blends of acrylonitrile-butadiene-styrene terpolymer with polypropylene (ABS/PP) was investigated focusing on the improvement of their thermomechanical characteristics and the effect on their rheological behavior. The blends were prepared by melt mixing in a twin-screw extruder and were characterized by measuring the MFI as well as by performing DSC, TGA and mechanical tests. The addition of graphene to ABS/PP blends tends to increase their melt viscosity, due to the confinement of polymer chains motion. Also, graphene causes an increment of the crystallization temperature (Tc), especially in blends with higher PP content, because of the reduction of surface energy of PP nucleation, which is a consequence of the attachment of PP chains to the surface of graphene through the intermolecular CH-π interaction. Moreover, the above nanofiller improves the thermal stability of PP and increases the residue of thermal degradation at all the investigated compositions of blends, due to the thermal isolation effect and the mass transport barrier effect. Regarding the mechanical properties, the addition of graphene improves the elastic modulus, because of its intrinsic mechanical characteristics and its rigidity, and this effect is particularly strong in the case of pure PP.

Performance Evaluation of Hybrid Intelligent Controllers in Load Frequency Control of Multi Area Interconnected Power Systems

This paper deals with the application of artificial neural network (ANN) and fuzzy based Adaptive Neuro Fuzzy Inference System(ANFIS) approach to Load Frequency Control (LFC) of multi unequal area hydro-thermal interconnected power system. The proposed ANFIS controller combines the advantages of fuzzy controller as well as quick response and adaptability nature of ANN. Area-1 and area-2 consists of thermal reheat power plant whereas area-3 and area-4 consists of hydro power plant with electric governor. Performance evaluation is carried out by using intelligent controller like ANFIS, ANN and Fuzzy controllers and conventional PI and PID control approaches. To enhance the performance of intelligent and conventional controller sliding surface is included. The performances of the controllers are simulated using MATLAB/SIMULINK package. A comparison of ANFIS, ANN, Fuzzy, PI and PID based approaches shows the superiority of proposed ANFIS over ANN & fuzzy, PI and PID controller for 1% step load variation.

Developing Damage Assessment Model for Bridge Surroundings: A Study of Disaster by Typhoon Morakot in Taiwan

This paper presents an integrated model that automatically measures the change of rivers, damage area of bridge surroundings, and change of vegetation. The proposed model is on the basis of a neurofuzzy mechanism enhanced by SOM optimization algorithm, and also includes three functions to deal with river imagery. High resolution imagery from FORMOSAT-2 satellite taken before and after the invasion period is adopted. By randomly selecting a bridge out of 129 destroyed bridges, the recognition results show that the average width has increased 66%. The ruined segment of the bridge is located exactly at the most scour region. The vegetation coverage has also reduced to nearly 90% of the original. The results yielded from the proposed model demonstrate a pinpoint accuracy rate at 99.94%. This study brings up a successful tool not only for large-scale damage assessment but for precise measurement to disasters.

Investigation of Genetic Epidemiology of Metabolic Compromises in ß Thalassemia Minor Mutation: Phenotypic Pleiotropy

Human genome is not only the evolutionary summation of all advantageous events, but also houses lesions of deleterious foot prints. A single gene mutation sometimes may express multiple consequences in numerous tissues and a linear relationship of the genotype and the phenotype may often be obscure. ß Thalassemia minor, a transfusion independent mild anaemia, coupled with environment among other factors may articulate into phenotypic pleotropy with Hypocholesterolemia, Vitamin D deficiency, Tissue hypoxia, Hyper-parathyroidism and Psychological alterations. Occurrence of Pancreatic insufficiency, resultant steatorrhoea, Vitamin-D (25-OH) deficiency (13.86 ngm/ml) with Hypocholesterolemia (85mg/dl) in a 30 years old male ß Thal-minor patient (Hemoglobin 11mg/dl with Fetal Hemoglobin 2.10%, Hb A2 4.60% and Hb Adult 84.80% and altered Hemogram) with increased Para thyroid hormone (62 pg/ml) & moderate Serum Ca+2 (9.5mg/ml) indicate towards a cascade of phenotypic pleotropy where the ß Thalassemia mutation ,be it in the 5’ cap site of the mRNA , differential splicing etc in heterozygous state is effecting several metabolic pathways. Compensatory extramedulary hematopoiesis may not coped up well with the stressful life style of the young individual and increased erythropoietic stress with high demand for cholesterol for RBC membrane synthesis may have resulted in Hypocholesterolemia.Oxidative stress and tissue hypoxia may have caused the pancreatic insufficiency, leading to Vitamin D deficiency. This may in turn have caused the secondary hyperparathyroidism to sustain serum Calcium level. Irritability and stress intolerance of the patient was a cumulative effect of the vicious cycle of metabolic compromises. From these findings we propose that the metabolic deficiencies in the ß Thalassemia mutations may be considered as the phenotypic display of the pleotropy to explain the genetic epidemiology. According to the recommendations from the NIH Workshop on Gene-Environment Interplay in Common Complex Diseases: Forging an Integrative Model, study design of observations should be informed by gene-environment hypotheses and results of a study (genetic diseases) should be published to inform future hypotheses. Variety of approaches is needed to capture data on all possible aspects, each of which is likely to contribute to the etiology of disease. Speakers also agreed that there is a need for development of new statistical methods and measurement tools to appraise information that may be missed out by conventional method where large sample size is needed to segregate considerable effect. A meta analytic cohort study in future may bring about significant insight on to the title comment.

Absence of Leave and Job Morality in the ICU

Leave of absence is important in maintaining a good status of human resource quality. Allowing the employees temporarily free from the routine assignments can vitalize the workers- morality and productivity. This is particularly critical to secure a satisfactory service quality for healthcare professionals of which were typically featured with labor intensive and complicated works to perform. As one of the veteran hospitals that were found and operated by the Veteran Department of Taiwan, the nursing staff of the case hospital was squeezed to an extreme minimum level under the pressure of a tight budgeting. Leave of absence on schedule became extremely difficult, especially for the intensive care units (ICU), in which required close monitoring over the cared patients, and that had more easily driven the ICU nurses nervous. Even worse, the deferred leaves were more than 10 days at any time in the ICU because of a fluctuating occupancy. As a result, these had brought a bad setback to this particular nursing team, and consequently defeated the job performance and service quality. To solve this problem and accordingly to strengthen their morality, a project team was organized across different departments specific for this. Sufficient information regarding jobs and positions requirements, labor resources, and actual working hours in detail were collected and analyzed in the team meetings. Several alternatives were finalized. These included job rotating, job combination, leave on impromptu and cross-departmental redeployment. Consequently, the deferred leave days sharply reduced 70% to a level of 3 or less days. This improvement had not only provided good shelter for the ICU nurses that improved their job performance and patient safety but also encouraged the nurses active participating of a project and learned the skills of solving problems with colleagues.

A Positioning Matrix to Assess and to Develop CSR Strategies

A company CSR commitment, as stated in its Social Report is, actually, perceived by its stakeholders?And in what measure? Moreover, are stakeholders satisfied with the company CSR efforts? Indeed, business returns from Corporate Social Responsibility (CSR) practices, such as company reputation and customer loyalty, depend heavily on how stakeholders perceive the company social conduct. In this paper, we propose a methodology to assess a company CSR commitment based on Global Reporting Initiative (GRI) indicators, Content Analysis and a CSR positioning matrix. We evaluate three aspects of CSR: the company commitment disclosed through its Social Report; the company commitment perceived by its stakeholders; the CSR commitment that stakeholders require to the company. The positioning of the company under study in the CSR matrix is based on the comparison among the three commitment aspects (disclosed, perceived, required) and it allows assessment and development of CSR strategies.

Efficient Moment Frame Structure

A different concept for designing and detailing of reinforced concrete precast frame structures is analyzed in this paper. The new detailing of the joints derives from the special hybrid moment frame joints. The special reinforcements of this alternative detailing, named modified special hybrid joint, are bondless with respect to both column and beams. Full scale tests were performed on a plan model, which represents a part of 5 story structure, cropped in the middle of the beams and columns spans. Theoretical approach was developed, based on testing results on twice repaired model, subjected to lateral seismic type loading. Discussion regarding the modified special hybrid joint behavior and further on widening research needed concludes the presentation.

Concept of Automation in Management of Electric Power Systems

An electric power system includes a generating, a transmission, a distribution, and consumers subsystems. An electrical power network in Tanzania keeps growing larger by the day and become more complex so that, most utilities have long wished for real-time monitoring and remote control of electrical power system elements such as substations, intelligent devices, power lines, capacitor banks, feeder switches, fault analyzers and other physical facilities. In this paper, the concept of automation of management of power systems from generation level to end user levels was determined by using Power System Simulator for Engineering (PSS/E) version 30.3.2.

Significance of Splitting Method in Non-linear Grid system for the Solution of Navier-Stokes Equation

Solution to unsteady Navier-Stokes equation by Splitting method in physical orthogonal algebraic curvilinear coordinate system, also termed 'Non-linear grid system' is presented. The linear terms in Navier-Stokes equation are solved by Crank- Nicholson method while the non-linear term is solved by the second order Adams-Bashforth method. This work is meant to bring together the advantage of Splitting method as pressure-velocity solver of higher efficiency with the advantage of consuming Non-linear grid system which produce more accurate results in relatively equal number of grid points as compared to Cartesian grid. The validation of Splitting method as a solution of Navier-Stokes equation in Nonlinear grid system is done by comparison with the benchmark results for lid driven cavity flow by Ghia and some case studies including Backward Facing Step Flow Problem.

An Advanced Hybrid P2p Botnet 2.0

Recently, malware attacks have become more serious over the Internet by e-mail, denial of service (DoS) or distributed denial of service (DDoS). The Botnets have become a significant part of the Internet malware attacks. The traditional botnets include three parts – botmaster, command and control (C&C) servers and bots. The C&C servers receive commands from botmaster and control the distributions of computers remotely. Bots use DNS to find the positions of C&C server. In this paper, we propose an advanced hybrid peer-to-peer (P2P) botnet 2.0 (AHP2P botnet 2.0) using web 2.0 technology to hide the instructions from botmaster into social sites, which are regarded as C&C servers. Servent bots are regarded as sub-C&C servers to get the instructions from social sites. The AHP2P botnet 2.0 can evaluate the performance of servent bots, reduce DNS traffics from bots to C&C servers, and achieve harder detection bots actions than IRC-based botnets over the Internet.

New Scheme in Determining nth Order Diagrams for Cross Multiplication Method via Combinatorial Approach

In this paper, a new recursive strategy is proposed for determining $\frac{(n-1)!}{2}$ of $n$th order diagrams. The generalization of $n$th diagram for cross multiplication method were proposed by Pavlovic and Bankier but the specific rule of determining $\frac{(n-1)!}{2}$ of the $n$th order diagrams for square matrix is yet to be discovered. Thus using combinatorial approach, $\frac{(n-1)!}{2}$ of the $n$th order diagrams will be presented as $\frac{(n-1)!}{2}$ starter sets. These starter sets will be generated based on exchanging one element. The advantages of this new strategy are the discarding process was eliminated and the sign of starter set is alternated to each others.

Effect of Natural Animal Fillers on Polymer Rheology Behaviour

This paper deals with the evaluation of flow properties of polymeric matrix with natural animal fillers. Technical university of Liberec cooperates on the long-term development of “green materials“ that should replace conventionally used materials (especially in automotive industry). Natural fibres (of animal and plant origin) from all over the world are collected and adapted (drying, cutting etc.) for extrusion processing. Inside the extruder these natural additives are blended with polymeric (synthetic and biodegradable - PLA) matrix and created compound is subsequently cut for pellets in the wet way. These green materials with unique recipes are then studied and their mechanical, physical and processing properties are determined. The main goal of this research is to develop new ecological materials very similar to unfilled polymers. In this article the rheological behaviour of chosen natural animal fibres is introduced considering their shape and surface that were observed with use of SEM microscopy.

Impregnation of Cupper into Kanuma Volcanic Ash Soil to Improve Mercury Sorption Capacity

The present study attempted to improve the Mercury (Hg) sorption capacity of kanuma volcanic ash soil (KVAS) by impregnating the cupper (Cu). Impregnation was executed by 1 and 5% Cu powder and sorption characterization of optimum Hg removing Cu impregnated KVAS was performed under different operational conditions, contact time, solution pH, sorbent dosage and Hg concentration using the batch operation studies. The 1% Cu impregnated KVAS pronounced optimum improvement (79%) in removing Hg from water compare to control. The present investigation determined the equilibrium state of maximum Hg adsorption at 6 h contact period. The adsorption revealed a pH dependent response and pH 3.5 showed maximum sorption capacity of Hg. Freundlich isotherm model is well fitted with the experimental data than that of Langmuir isotherm. It can be concluded that the Cu impregnation improves the Hg sorption capacity of KVAS and 1% Cu impregnated KVAS could be employed as cost-effective adsorbent media for treating Hg contaminated water.

Influence of Thermal and Mechanical Shocks to Cutting Edge Tool Life

This paper deals with the problem of thermal and mechanical shocks, which rising during operation, mostly at interrupted cut. Here will be solved their impact on the cutting edge tool life, the impact of coating technology on resistance to shocks and experimental determination of tool life in heating flame. Resistance of removable cutting edges against thermal and mechanical shock is an important indicator of quality as well as its abrasion resistance. Breach of the edge or its crumble may occur due to cyclic loading. We can observe it not only during the interrupted cutting (milling, turning areas abandoned hole or slot), but also in continuous cutting. This is due to the volatility of cutting force on cutting. Frequency of the volatility in this case depends on the type of rising chips (chip size element). For difficult-to-machine materials such as austenitic steel particularly happened at higher cutting speeds for the localization of plastic deformation in the shear plane and for the inception of separate elements substantially continuous chips. This leads to variations of cutting forces substantially greater than for other types of steel.

An Efficient Cache Replacement Strategy for the Hybrid Cache Consistency Approach

Caching was suggested as a solution for reducing bandwidth utilization and minimizing query latency in mobile environments. Over the years, different caching approaches have been proposed, some relying on the server to broadcast reports periodically informing of the updated data while others allowed the clients to request for the data whenever needed. Until recently a hybrid cache consistency scheme Scalable Asynchronous Cache Consistency Scheme SACCS was proposed, which combined the two different approaches benefits- and is proved to be more efficient and scalable. Nevertheless, caching has its limitations too, due to the limited cache size and the limited bandwidth, which makes the implementation of cache replacement strategy an important aspect for improving the cache consistency algorithms. In this thesis, we proposed a new cache replacement strategy, the Least Unified Value strategy (LUV) to replace the Least Recently Used (LRU) that SACCS was based on. This paper studies the advantages and the drawbacks of the new proposed strategy, comparing it with different categories of cache replacement strategies.

Delay-range-Dependent Exponential Synchronization of Lur-e Systems with Markovian Switching

The problem of delay-range-dependent exponential synchronization is investigated for Lur-e master-slave systems with delay feedback control and Markovian switching. Using Lyapunov- Krasovskii functional and nonsingular M-matrix method, novel delayrange- dependent exponential synchronization in mean square criterions are established. The systems discussed in this paper is advanced system, and takes all the features of interval systems, Itˆo equations, Markovian switching, time-varying delay, as well as the environmental noise, into account. Finally, an example is given to show the validity of the main result.

Novel Trends in Manufacturing Systems with View on Implementation Possibilities of Intelligent Automation

The current trend of increasing quality and demands of the final product is affected by time analysis of the entire manufacturing process. The primary requirement of manufacturing is to produce as many products as soon as possible, at the lowest possible cost, but of course with the highest quality. Such requirements may be satisfied only if all the elements entering and affecting the production cycle are in a fully functional condition. These elements consist of sensory equipment and intelligent control elements that are essential for building intelligent manufacturing systems. The intelligent manufacturing paradigm includes a new approach to production system structure design. Intelligent behaviors are based on the monitoring of important parameters of system and its environment. The flexible reaction to changes. The realization and utilization of this design paradigm as an "intelligent manufacturing system" enables the flexible system reaction to production requirement as soon as environmental changes too. Results of these flexible reactions are a smaller layout space, be decreasing of production and investment costs and be increasing of productivity. Intelligent manufacturing system itself should be a system that can flexibly respond to changes in entering and exiting the process in interaction with the surroundings.