Rheological and Thermomechanical Properties of Graphene/ABS/PP Nanocomposites

In the present study, the incorporation of graphene
into blends of acrylonitrile-butadiene-styrene terpolymer with
polypropylene (ABS/PP) was investigated focusing on the
improvement of their thermomechanical characteristics and the effect
on their rheological behavior. The blends were prepared by melt
mixing in a twin-screw extruder and were characterized by measuring
the MFI as well as by performing DSC, TGA and mechanical tests.
The addition of graphene to ABS/PP blends tends to increase their
melt viscosity, due to the confinement of polymer chains motion.
Also, graphene causes an increment of the crystallization temperature
(Tc), especially in blends with higher PP content, because of the
reduction of surface energy of PP nucleation, which is a consequence
of the attachment of PP chains to the surface of graphene through the
intermolecular CH-π interaction. Moreover, the above nanofiller
improves the thermal stability of PP and increases the residue of
thermal degradation at all the investigated compositions of blends,
due to the thermal isolation effect and the mass transport barrier
effect. Regarding the mechanical properties, the addition of graphene
improves the elastic modulus, because of its intrinsic mechanical
characteristics and its rigidity, and this effect is particularly strong in
the case of pure PP.





References:
[1] S. N. Maiti, V. Agarwal, A. K. Gupta, "Melt rheological behavior of
PP–SAN blend,” J. Appl. Polym. Sci., vol. 43, pp. 1891-1900, 1991.
[2] A. C. Patel, R. B. Brahmbhatt, B. D. Sarawade, S. Devi, "Morphological
and mechanical properties of PP/ABS blends compatibilized with PP-gacrylic
acid,” J. Appl. Polym. Sci., vol. 81, pp. 1731-1741, 2001.
[3] H. G. Lee, Y.-T. Sung, Y. K. Lee, W. N. Kim, H. G. Yoom, H. S. Lee,
"Effects of PP-g-MAH on the mechanical, morphological and
rheological properties of polypropylene and poly(acrylonitrilebutadiene-
styrene) Blends,” Macromol. Research, vol. 17, pp. 417-423,
2009.
[4] P. Xiang-Fang, P. Jun, X. Xiao-li, T. Lih-Sheng, "Effect of organoclay
on the mechanical properties and crystallization behaviors of injectionmolded
PP/ABS/montmorillonite nanocomposites,” ANTEC, pp. 1105-
1108, 2009.
[5] C. Markin, H. L. Williams, "Polypropylene/ABS terpolymer blends.
mixing and mechanical properties,” J. Appl. Polym. Sci., vol. 25, pp.
2451-2466, 1980.
[6] A. K. Gupta, A. K. Jain, S. N. Maiti, "Studies on binary and ternary
blends of polypropylene with ABS and LDPE. I. Melt rheological
behavior,” J. Appl. Polym. Sci., vol. 38, pp. 1699-1717, 1989.
[7] A. K. Gupta, A. K. Jain, B. K. Ratman, S. N. Maiti, "Studies on binary
and ternary blends of polypropylene with ABS and LDPE. II. Impact
and tensile properties,” J. Appl. Polym. Sci., vol. 39, pp. 515-530, 1990.
[8] Q. Shu, X. Zou, W. Dai, Z. Fu, "Formation of β-iPP in isotactic
polypropylene/acrylonitrile–butadiene–styrene blends: Effect of resin type, phase composition, and thermal condition,” J. Macromol. Sci., Part
B: Physics, vol. 51, pp. 756–766, 2012.
[9] C. Wang, Z. Zhang, Y. Du, J. Zhang, K. Mai, "Effect of acrylonitrile–
butadiene–styrene copolymer (ABS) on β-nucleation in β-nucleated
polypropylene/ABS blends,” Polym. Bull., vol. 69, pp. 847–859, 2012.
[10] M. Frounchi, R. P. Burford, "State of compatibility in crystalline
polypropylene/ABS amorphous terpolymer thermoplastic blends. Effect
of styrenic copolymers as compatibilisers,” Iran. J. Polym. Sci. and
Technol., vol. 2, pp. 59-68, 1993.
[11] E. Arroyo, C. Guerrero, V. Gonzalez, "Blends of ABS and iPP,”
ANTEC
[12] Y. K. Lee, J. B. Lee, D. H. Park, W. N. Kim, "Effects of accelerated
aging and compatibilizers on the mechanical and morphological
properties of polypropylene and poly(acrylonitrile-butadiene-styrene)
blends”, J. Appl. Polym. Sci., vol. 127, pp. 1032-1037, 2013.
[13] C. K. Kum, Y.-T. Sung, Y. S. Kim, H. G. Lee, W. N. Kim, H.S. Lee,
H.G. Yoon, "Effects of compatibilizer on mechanical, morphological,
and rheological properties of polypropylene/poly(acrylonitrilebutadiene-
styrene) blends,” Macromol. Research, vol. 15, pp. 308-314,
2007.
[14] A. C. Patel, R. B. Brahmbhatt, S. Devi, "Mechanical properties and
morphology of PP/ABS blends compatibilized with PP-g-2-HEMA,” J.
Appl. Polym. Sci., vol. 88, pp. 72-78, 2003.
[15] Y. Wang, Q. Zhang, Q. Fu, "Compatibilization of immiscible
poly(propylene)/polystyrene blends using clay”, Macromol. Rapid
Commun., vol. 24, issue 3, pp. 231-235, 2003.
[16] B. Chen, J.R.G. Evans, "Mechanical properties of polymer-blend
nanocomposites with organoclays: Polystyrene/ABS and high impact
polystyrene/ABS”, J. Polym. Sci., Part B: Polym. Phys., vol. 49, issue 6,
pp. 443-454, 2011.
[17] C. C. Ibeh, N. Baker, D. Lamm, S. Wang, D. Weber, J. Oplonitnik,
ANTEC conference proceedings 5, pp. 1893-1897, 2005.
[18] Y. T. Sung, Y. S. Kim, Y. K. Lee, W. N. Kim, H. S. Lee, J. Y. Sung, H.
G. Yoon, "Effects of clay on the morphology of poly(acrylonitrilebutadiene-
styrene) and polypropylene nanocomposites,” Polym. Eng.
Sci., vol. 47, pp. 1671-1677, 2007.
[19] B. Panda, A. R. Bhattacharyya, A. R. Kulkarni, "Ternary polymer
blends of polyamide 6, polypropylene and acrylonitrile-butadienestyrene:
Influence of multi walled carbon nanotubes on phase
morphology, electrical conductivity, and crystallization,” Polym. Eng.
Sci., vol. 51, pp. 1550-1563, 2011.
[20] R. A. Khare, A. R. Bhattacharyya, A. R. Kulkarni, "Melt-mixed
polypropylene/acrylonitrile-butadiene-styrene blends with multiwall
carbon nanotubes: Effect of compatibilizer and modifier on morphology
and electrical conductivity,” J. Appl. Polym. Sci., vol. 120, pp. 2663–
2672, 2011.
[21] R. A. Khare, A. R. Bhattacharyya, A. R. Kulkarni, M. Saroop, A.
Biswas, "Influence of multiwall carbon nanotubes on morphology and
electrical conductivity of PP/ABS blends,” J. Polym. Sci.: Part B:
Polym. Physics, vol. 46, pp. 2286–2295, 2008.
[22] M. Milani, R. Ouijada, N. R. S. Basso, A. P. Graebin, G. B. Galland,
"Influence of the graphite type on the synthesis of
polypropylene/graphene nanocomposites,” J. Polym. Sci., Part A:
Polym. Chem.,vol. 50, pp. 3958-3605, 2012.
[23] C. I. Ferreira., C. Dal Castel., M. A. S. Oviedoc, R. S. Mauler.,
"Isothermal and non-isothermal crystallization kinetics of
polypropylene/exfoliated graphite nanocomposites,” Thermochim. Acta,
vol. 553, pp. 40– 48, 2013.
[24] P. Steurer, R. Wissert, R. Thomann, R. Mülhaupt, "Functionalized
graphenes and thermoplastic nanocomposites based upon expanded
graphite oxide,” Macromol. Rapid Commun., vol. 30, pp. 316–327,
2009.
[25] S. Zhao, F. Chen, C. Zhao, Y. Huang, J.-Y. Dong, C. C. Han,
"Interpenetrating network formation in isotactic polypropylene/graphene
composites,” Polymer, vol. 54, pp. 3680-3690, 2013.
[26] G. Gedler, M. Antunes, V. Realinho, J. L. Velasco, "Novel
polycarbonate-graphene nanocomposite foams prepared by CO2
dissolution,” IOP Conf. Ser.: Mater. Sci. Eng., vol. 31, 2012.
[27] G. Gedler, M. Antunes, V. Realinho, J. L. Velasco, "Thermal stability of
polycarbonate-graphene nanocomposite foams,” Polym. Degrad. Stab.,
vol. 97, pp. 1297-1304, 2012.
[28] P. Song, L. Liu, S. Fu, Y. Yu, C. Jin, Q. Wu, Y. Zhang, Q. Li, "Striking
multiple synergies created by combining reduced graphene oxides and
carbon nanotubes for polymer nanocomposites,” Nanotechnology, vol.
24, no. 12, 2013.
[29] B. Shen, W. Zhai, M. Tao, D. Lu, W. Zheng, "Chemical
functionalization of graphene oxide toward the tailoring of the interface
in polymer composites,” Compos. Sci. Technol., vol. 77, pp. 87-94,
2013.
[30] S. V.Polschikov, P. M. Nedorezova, A. N. Klyamkina, A. A. Kovalchuk,
A. M. Aladyshev, A. N. Shchegolikhin, V. G. Shevchenko, V. E.
Muradyan, "Composite materials of graphene nanoplatelets and
polypropylene, prepared by in situ polymerization,” J. Polym. Sci., vol.
127, issue 2, pp 904-911, Jan. 2013.
[31] H. J. Park, J. Meyer, S. Roth, V. Skákalová, "Growth and properties of
few-layer graphene prepared by chemical vapor deposition,” Carbon,
vol. 48, pp. 1088-1094, 2010.
[32] M. E. Achaby, F. E. Arrakhiz, S. Vaudreuil, A. K. Qaiss, M. Bousmina,
O. Fassi-Fehri, "Mechanical, Thermal, and Rheological Properties of
Graphene-Based Polypropylene Nanocomposites Prepared by Melt
Mixing,” Polym.Compos., vol. 33, issue 5, pp. 733-744, May 2012.
[33] C. Heo, H.-G. Moon, C.-S. Yoon, J.-H. Chang, "ABS Nanocomposite
films based on functionalized-graphene sheets”, J. Appl. Polym. Sci.,
vol. 124, pp. 4663–4670, 2012.
[34] M. Milani, D. González, R. Ouijada, N. R. S. Basso, M. L. Cerrada, D.
Azambuja, G. B. Galland, "Polypropylene/graphene nanosheet
nanocomposites by in situ polymerization: synthesis, characterization
and fundamental properties,” Comp. Sci. Technol., vol. 84, pp. 1-7,
2013.
[35] V. G. Shevchenko, S. V. Polschiko, P. M. Nedorezova, A. N.
Klyamkina, A. N. Shchegolikhin, A. M. Aladyshev, V. E. Muradyan,
"In situ polymerized poly(propylene)/graphene nanoplatelets
nanocomposites: Dielectric and microwave properties,” Polymer, vol.
53, pp. 5330-5335, 2012.
[36] J.-Z. Xu, C. Chen, Y. Wang, H. Tang, Z.-M. Li, B. S. Hsiao, "Graphene
Nanosheets and Shear Flow Induced crystallization in isotactic
polypropylene nanocomposites,” Macromolecules, vol. 44, pp. 2808–
2818, 2011.
[37] J.-E. An, G. W. Jeon, Y. G. Jeong, "Preparation and properties of
polypropylene nanocomposites reinforced with exfoliated graphene”,
Fibers Polym., vol. 13, no. 4, pp 507-514, 2012.
[38] P. Song, Z. Cao, Y. Cai, L. Zhao, Z. Fang, S. Fu, "Fabrication of
exfoliated graphene-based polypropylene nanocomposites with
enhanced mechanical and thermal properties”, Polymer, vol. 52, pp.
4001-4010, 2011.
[39] J. Dai, Y. Shen, J.-H. Yang, T. Huang, N. Zhang, Y. Wang,
"Crystallization and melting behaviors of polypropylene admixed by
graphene and β-phase nucleating agent”, Colloid Polym. Sci., pp. 1-11,
2013.
[40] J. Ma, Q. Meng, I. Zaman, S. Zhu, A. Michelmore, N. Kawashima, C. H.
Wang, H.-C. Kuan, "Development of polymer composites using
modified, high-structural integrity graphene platelets,” Comp. Sci.
Technol., vol. 91, pp. 82–90, 2014.
[41] J.-B. Chen, J.-Z. Xu, H. Pang, G.-J. Zhong, L. Xu, H. Tang, J.-H. Tang,
Z.-M. Li, "Crystallization of Isotactic Polypropylene inside Dense
Networks of Carbon Nanofillers”, J. Appl. Polym. Sci., vol. 131, issue 6,
2014.