Use of Detectors Technology for Gamma Ray Issued from Radioactive Isotopes and its Impact on Knowledge of Behavior of the Stationary Case of Solid Phase Holdup

For gamma radiation detection, assemblies having scintillation crystals and a photomultiplier tube, also there is a preamplifier connected to the detector because the signals from photomultiplier tube are of small amplitude. After pre-amplification the signals are sent to the amplifier and then to the multichannel analyser. The multichannel analyser sorts all incoming electrical signals according to their amplitudes and sorts the detected photons in channels covering small energy intervals. The energy range of each channel depends on the gain settings of the multichannel analyser and the high voltage across the photomultiplier tube. The exit spectrum data of the two main isotopes studied ,putting data in biomass program ,process it by Matlab program to get the solid holdup image (solid spherical nuclear fuel)

The New Semi-Experimental Method for Simulation of Turbine Flow Meters Rotation in the Transitional Flow

The new semi-experimental method for simulation of the turbine flow meters rotation in the transitional flow has been developed. The method is based on the experimentally established exponential low of changing of dimensionless relative turbine gas meter rotation frequency and meter inertia time constant. For experimental evaluation of the meter time constant special facility has been developed. The facility ensures instant switching of turbine meter under test from one channel to the other channel with different flow rate and measuring the meter response. The developed method can be used for evaluation and predication of the turbine meters response and dynamic error in the transitional flow with any arbitrary law of flow rate changing. The examples of the method application are presented.

Lattice Boltzmann Method for Turbulent Heat Transfer in Wavy Channel Flows

The hydrodynamic and thermal lattice Boltzmann methods are applied to investigate the turbulent convective heat transfer in the wavy channel flows. In this study, the turbulent phenomena are modeling by large-eddy simulations with the Smagorinsky model. As a benchmark, the laminar and turbulent backward-facing step flows are simulated first. The results give good agreement with other numerical and experimental data. For wavy channel flows, the distribution of Nusselt number and the skin-friction coefficients are calculated to evaluate the heat transfer effect and the drag force. It indicates that the vortices at the trough would affect the magnitude of drag and weaken the heat convection effects on the wavy surface. In turbulent cases, if the amplitude of the wavy boundary is large enough, the secondary vortices would be generated at troughs and contribute to the heat convection. Finally, the effects of different Re on the turbulent transport phenomena are discussed.

Optimum Radio Capacity Estimation of a Single-Cell Spread Spectrum MIMO System under Rayleigh Fading Conditions

In this paper, the problem of estimating the optimal radio capacity of a single-cell spread spectrum (SS) multiple-inputmultiple- output (MIMO) system operating in a Rayleigh fading environment is examined. The optimisation between the radio capacity and the theoretically achievable average channel capacity (in the sense of information theory) per user of a MIMO single-cell SS system operating in a Rayleigh fading environment is presented. Then, the spectral efficiency is estimated in terms of the achievable average channel capacity per user, during the operation over a broadcast time-varying link, and leads to a simple novel-closed form expression for the optimal radio capacity value based on the maximization of the achieved spectral efficiency. Numerical results are presented to illustrate the proposed analysis.

Distributed Relay Selection and Channel Choice in Cognitive Radio Network

In this paper, we study the cooperative communications where multiple cognitive radio (CR) transmit-receive pairs competitive maximize their own throughputs. In CR networks, the influences of primary users and the spectrum availability are usually different among CR users. Due to the existence of multiple relay nodes and the different spectrum availability, each CR transmit-receive pair should not only select the relay node but also choose the appropriate channel. For this distributed problem, we propose a game theoretic framework to formulate this problem and we apply a regret-matching learning algorithm which is leading to correlated equilibrium. We further formulate a modified regret-matching learning algorithm which is fully distributed and only use the local information of each CR transmit-receive pair. This modified algorithm is more practical and suitable for the cooperative communications in CR network. Simulation results show the algorithm convergence and the modified learning algorithm can achieve comparable performance to the original regretmatching learning algorithm.

Enhanced Performance of Fading Dispersive Channel Using Dynamic Frequency Hopping(DFH)

techniques are examined to overcome the performance degradation caused by the channel dispersion using slow frequency hopping (SFH) with dynamic frequency hopping (DFH) pattern adaptation. In DFH systems, the frequency slots are selected by continuous quality monitoring of all frequencies available in a system and modification of hopping patterns for each individual link based on replacing slots which its signal to interference ratio (SIR) measurement is below a required threshold. Simulation results will show the improvements in BER obtained by DFH in comparison with matched frequency hopping (MFH), random frequency hopping (RFH) and multi-carrier code division multiple access (MC-CDMA) in multipath slowly fading dispersive channels using a generalized bandpass two-path transfer function model, and will show the improvement obtained according to the threshold selection.

Definition and Implementation of a Simulation Model for the Physical Layer and the Radio Channel in Dedicated Short Range Communication Systems

This paper proposes a vehicle-to-vehicle propagation model implemented with SDL. To estimate the channel characteristics for Inter-Vehicle communication, we first define a predicted propagation pathloss between the moving vehicles under three typical scenarios. A Ray-tracing method is used for the simple gamma model performance.

Modeling and Analysis for Effective Capacity of a Cross-Layer Optimized Wireless Networks

New generation mobile communication networks have the ability of supporting triple play. In order that, Orthogonal Frequency Division Multiplexing (OFDM) access techniques have been chosen to enlarge the system ability for high data rates networks. Many of cross-layer modeling and optimization schemes for Quality of Service (QoS) and capacity of downlink multiuser OFDM system were proposed. In this paper, the Maximum Weighted Capacity (MWC) based resource allocation at the Physical (PHY) layer is used. This resource allocation scheme provides a much better QoS than the previous resource allocation schemes, while maintaining the highest or nearly highest capacity and costing similar complexity. In addition, the Delay Satisfaction (DS) scheduling at the Medium Access Control (MAC) layer, which allows more than one connection to be served in each slot is used. This scheduling technique is more efficient than conventional scheduling to investigate both of the number of users as well as the number of subcarriers against system capacity. The system will be optimized for different operational environments: the outdoor deployment scenarios as well as the indoor deployment scenarios are investigated and also for different channel models. In addition, effective capacity approach [1] is used not only for providing QoS for different mobile users, but also to increase the total wireless network's throughput.

A Semi-Fragile Watermarking Scheme for Color Image Authentication

In this paper, a semi-fragile watermarking scheme is proposed for color image authentication. In this particular scheme, the color image is first transformed from RGB to YST color space, suitable for watermarking the color media. Each channel is divided into 4×4 non-overlapping blocks and its each 2×2 sub-block is selected. The embedding space is created by setting the two LSBs of selected sub-block to zero, which will hold the authentication and recovery information. For verification of work authentication and parity bits denoted by 'a' & 'p' are computed for each 2×2 subblock. For recovery, intensity mean of each 2×2 sub-block is computed and encoded upto six to eight bits depending upon the channel selection. The size of sub-block is important for correct localization and fast computation. For watermark distribution 2DTorus Automorphism is implemented using a private key to have a secure mapping of blocks. The perceptibility of watermarked image is quite reasonable both subjectively and objectively. Our scheme is oblivious, correctly localizes the tampering and able to recovery the original work with probability of near one.

A Numerical Model to Study the Rapid Buffering Approximation near an Open Ca2+ Channel for an Unsteady State Case

Chemical reaction and diffusion are important phenomena in quantitative neurobiology and biophysics. The knowledge of the dynamics of calcium Ca2+ is very important in cellular physiology because Ca2+ binds to many proteins and regulates their activity and interactions Calcium waves propagate inside cells due to a regenerative mechanism known as calcium-induced calcium release. Buffer-mediated calcium diffusion in the cytosol plays a crucial role in the process. A mathematical model has been developed for calcium waves by assuming the buffers are in equilibrium with calcium i.e., the rapid buffering approximation for a one dimensional unsteady state case. This model incorporates important physical and physiological parameters like dissociation rate, diffusion rate, total buffer concentration and influx. The finite difference method has been employed to predict [Ca2+] and buffer concentration time course regardless of the calcium influx. The comparative studies of the effect of the rapid buffered diffusion and kinetic parameters of the model on the concentration time course have been performed.

CBCTL: A Reasoning System of TemporalEpistemic Logic with Communication Channel

This paper introduces a temporal epistemic logic CBCTL that updates agent-s belief states through communications in them, based on computational tree logic (CTL). In practical environments, communication channels between agents may not be secure, and in bad cases agents might suffer blackouts. In this study, we provide inform* protocol based on ACL of FIPA, and declare the presence of secure channels between two agents, dependent on time. Thus, the belief state of each agent is updated along with the progress of time. We show a prover, that is a reasoning system for a given formula in a given a situation of an agent ; if it is directly provable or if it could be validated through the chains of communications, the system returns the proof.

A Comparison of Adaline and MLP Neural Network based Predictors in SIR Estimation in Mobile DS/CDMA Systems

In this paper we compare the response of linear and nonlinear neural network-based prediction schemes in prediction of received Signal-to-Interference Power Ratio (SIR) in Direct Sequence Code Division Multiple Access (DS/CDMA) systems. The nonlinear predictor is Multilayer Perceptron MLP and the linear predictor is an Adaptive Linear (Adaline) predictor. We solve the problem of complexity by using the Minimum Mean Squared Error (MMSE) principle to select the optimal predictors. The optimized Adaline predictor is compared to optimized MLP by employing noisy Rayleigh fading signals with 1.8 GHZ carrier frequency in an urban environment. The results show that the Adaline predictor can estimates SIR with the same error as MLP when the user has the velocity of 5 km/h and 60 km/h but by increasing the velocity up-to 120 km/h the mean squared error of MLP is two times more than Adaline predictor. This makes the Adaline predictor (with lower complexity) more suitable than MLP for closed-loop power control where efficient and accurate identification of the time-varying inverse dynamics of the multi path fading channel is required.

An Adaptive ARQ – HARQ Method with Two RS Codes

In this paper we proposed multistage adaptive ARQ/HARQ/HARQ scheme. This method combines pure ARQ (Automatic Repeat reQuest) mode in low channel bit error rate and hybrid ARQ method using two different Reed-Solomon codes in middle and high error rate conditions. It follows, that our scheme has three stages. The main goal is to increase number of states in adaptive HARQ methods and be able to achieve maximum throughput for every channel bit error rate. We will prove the proposal by calculation and then with simulations in land mobile satellite channel environment. Optimization of scheme system parameters is described in order to maximize the throughput in the whole defined Signal-to- Noise Ratio (SNR) range in selected channel environment.

An Efficient Watermarking Method for MP3 Audio Files

In this work, we present for the first time in our perception an efficient digital watermarking scheme for mpeg audio layer 3 files that operates directly in the compressed data domain, while manipulating the time and subband/channel domain. In addition, it does not need the original signal to detect the watermark. Our scheme was implemented taking special care for the efficient usage of the two limited resources of computer systems: time and space. It offers to the industrial user the capability of watermark embedding and detection in time immediately comparable to the real music time of the original audio file that depends on the mpeg compression, while the end user/audience does not face any artifacts or delays hearing the watermarked audio file. Furthermore, it overcomes the disadvantage of algorithms operating in the PCMData domain to be vulnerable to compression/recompression attacks, as it places the watermark in the scale factors domain and not in the digitized sound audio data. The strength of our scheme, that allows it to be used with success in both authentication and copyright protection, relies on the fact that it gives to the users the enhanced capability their ownership of the audio file not to be accomplished simply by detecting the bit pattern that comprises the watermark itself, but by showing that the legal owner knows a hard to compute property of the watermark.

Mixed Convection in a 2D-channel with a Co- Flowing Fluid Injection: Influence of the Jet Position

Numerical study of a plane jet occurring in a vertical heated channel is carried out. The aim is to explore the influence of the forced flow, issued from a flat nozzle located in the entry section of a channel, on the up-going fluid along the channel walls. The Reynolds number based on the nozzle width and the jet velocity ranges between 3 103 and 2.104; whereas, the Grashof number based on the channel length and the wall temperature difference is 2.57 1010. Computations are established for a symmetrically heated channel and various nozzle positions. The system of governing equations is solved with a finite volumes method. The obtained results show that the jet-wall interactions activate the heat transfer, the position variation modifies the heat transfer especially for low Reynolds numbers: the heat transfer is enhanced for the adjacent wall; however it is decreased for the opposite one. The numerical velocity and temperature fields are post-processed to compute the quantities of engineering interest such as the induced mass flow rate, and the Nusselt number along the plates.

An Evaluation Framework for Participation: The VAAs Case Study

The number of electronic participation (eParticipation) projects introduced by different governments and international organisations is considerably high and increasing. In order to have an overview of the development of these projects, various evaluation frameworks have been proposed. In this paper, a five-level participation model, which takes into account the advantages of the Social Web or Web 2.0, together with a quantitative approach for the evaluation of eParticipation projects is presented. Each participation level is evaluated independently, taking into account three main components: Web evolution, media richness, and communication channels. This paper presents the evaluation of a number of existing Voting Advice Applications (VAAs). The results provide an overview of the main features implemented by each project, their strengths and weaknesses, and the participation levels reached.

Heat Transfer Analysis of Rectangular Channel Plate Heat Sink

In order to improve the simulation effects of space cold black environment, this paper described a rectangular channel plate heat sink. By using fluid mechanics theory and finite element method, the internal fluid flow and heat transfer in heat sink was numerically simulated to analyze the impact of channel structural on fluid flow and heat transfer. The result showed that heat sink temperature uniformity is well, and the impact of channel structural on the heat sink temperature uniformity is not significant. The channel depth and spacing are important factors which affect the fluid flow and heat transfer in the heat sink. The two factors of heat transfer and resistance need to be considered comprehensively to determine the optimal flow structure parameters.

Performance Comparison and Analysis of Serial Concatenated Convolutional Codes

In this paper, the performance of three types of serial concatenated convolutional codes (SCCC) is compared and analyzed in additive white Gaussian noise (AWGN) channel. In Type I, only the parity bits of outer encoder are passed to inner encoder. In Type II and Type III, both the information bits and the parity bits of outer encoder are transferred to inner encoder. As results of simulation, Type I shows the best bit error rate (BER) performance at low signal-to-noise ratio (SNR). On the other hand, Type III shows the best BER performance at high SNR in AWGN channel. The simulation results are analyzed using the distance spectrum.

Joint Transmitter-Receiver Optimization for Bonded Wireline Communications

With the advent of DSL services, high data rates are now available over phone lines, yet higher rates are in demand. In this paper, we optimize the transmit filters that can be used over wireline channels. Results showing the bit error rates when optimized filters are used, and with a decision feedback equalizer (DFE) employed in the receiver, are given. We then show that significantly higher throughput can be achieved by modeling the channel as a multiple input multiple output (MIMO) channel. A receiver that employs a MIMO-DFE that deals jointly with several users is proposed and shown to provide significant improvement over the conventional DFE.

Slip Effect Study of 4:1 Contraction Flow for Oldroyd-B Model

The numerical simulation of the slip effect via vicoelastic fluid for 4:1 contraction problem is investigated with regard to kinematic behaviors of streamlines and stress tensor by models of the Navier-Stokes and Oldroyd-B equations. Twodimensional spatial reference system of incompressible creeping flow with and without slip velocity is determined and the finite element method of a semi-implicit Taylor-Galerkin pressure-correction is applied to compute the problem of this Cartesian coordinate system including the schemes of velocity gradient recovery method and the streamline-Upwind / Petrov-Galerkin procedure. The slip effect at channel wall is added to calculate after each time step in order to intend the alteration of flow path. The result of stress values and the vortices are reduced by the optimum slip coefficient of 0.1 with near the outcome of analytical solution.