Enhanced Performance of Fading Dispersive Channel Using Dynamic Frequency Hopping(DFH)

techniques are examined to overcome the performance degradation caused by the channel dispersion using slow frequency hopping (SFH) with dynamic frequency hopping (DFH) pattern adaptation. In DFH systems, the frequency slots are selected by continuous quality monitoring of all frequencies available in a system and modification of hopping patterns for each individual link based on replacing slots which its signal to interference ratio (SIR) measurement is below a required threshold. Simulation results will show the improvements in BER obtained by DFH in comparison with matched frequency hopping (MFH), random frequency hopping (RFH) and multi-carrier code division multiple access (MC-CDMA) in multipath slowly fading dispersive channels using a generalized bandpass two-path transfer function model, and will show the improvement obtained according to the threshold selection.

Authors:



References:
[1] X.Wang and Z. Kostic, "Analysis of frequency-hopped cellular systems
with dynamic FH pattern adaptation," in Proc. IEEE Globecom,
Communications Theory Mini Conf., Sydney, Australia, Nov. 1998.
[2] Z. Kostic and I. Maric, "Dynamic frequency hopping in wireless cellular
systemsÔÇösimulations of full-replacement and reduced-overhead
methods," in Proc. IEEE VTC-99, Houston, TX, May 1999.
[3] Q. C. Chen et al., "MulticarrierCDMAwith adaptive frequency hopping
for mobile radio systems," IEEE J. Select. Areas Commun., vol. 14,
pp.1852-1858, Dec. 1996.
[4] C. C. Wang and G. Pottie, "Interference avoidance and power control
strategies for coded frequency hopped cellular systems," in Proc. IEEE
Int. Conf. Communications (ICC), 1995, pp. 1737-1741.
[5] W. Hu, D. Willkomm, L. Chu, M. Abusubaih, J. Gross, G. Vlantis, M.
Gerla, and A. Wolisz, "Dynamic frequency hopping communities for
efficient IEEE 802.22 operation," IEEE Commun. Mag., Special Issue:
"Cognitive Radios for Dynamic Spectrum Access", vol. 45, no. 5, pp.
80-87,May 2007.
[6] C. C. Lee and R. Steele, "Signal to interference calculations for modern
TDMA cellular communication systems," Proc. Inst. Elect. Eng.
Commun., vol. 142, pp. 21-30, Feb. 1995.
[7] M. Chiani et al., "Outage evaluation for slow frequency-hopping mobile
radio systems," IEEE Transactions on Communications, vol. 47, pp.
1865-1874, Dec 1999.
[8] J. Moon, L. Hughes, and D. Smith, "Assignment of frequency lists in
frequency hopping networks,"IEEE Trans. Veh. Technol., vol. 54, no. 3,
pp. 1147-1159, 2005.
[9] D. Hollos, D. Willkomm, J. Gross, and W. Hu, "Centralized vs.
distributed frequency assignment in frequency hopping (cognitive radio)
cellular networks," Telecommunication Networks Group, Technische
Universit¨at Berlin, Tech. Rep. TKN-07-007, Dec. 2007.
[10] Said E. El-khamy "Matched frequency-hopping (MFH) signals for
slowly fading dispersive channel" IEEE Transactions on Vehicular
Technology, vol. 47, NO. 1, Feb 1998.
[11] C.W. Helstrom, Probability and Stochastic Processes for Engineers.New
York: Macmillan, 1984.
[12] L. Chu, W. Hu, G. Vlantis, J. Gross, M. Abusubaih, D. Willkomm, and
A. Wolisz, "Dynamic frequency hopping community," online, IEEE
802.22 Working Group, Technical proposal submitted to IEEE 802.22
WG 22-06-0113, Jun. 2006.
[13] W. D. Rummler, "A new selective fading model: Application to
propagation data," Bell Syst. Tech. J., vol. 59, no. 5, pp. 1037-1071,
May-June 1979.
[14] C. A. Siller Jr., "Multipath propagation," IEEE Commun. Mag., vol. 22,
no. 2, pp. 6-15, 1984.
[15] S. E. El-Khamy and A. M. Dobaie, "Propagation-medium matched
direct-sequence (PM-MDS) spread-spectrum signals," IEEE Trans.
Antennas Propagat., vol. 39, pp. 1449-1456, Oct. 1991.