Contribution of Vitaton (Β-Carotene) to the Rearing Factors Survival Rate and Visual Flesh Color of Rainbow Trout Fish in Comparison With Astaxanthin

In this study Vitaton (an organic supplement which contains fermentative β-carotene) and synthetic astaxanthin (CAROPHYLL® Pink) were evaluated as pro-growth factors in Rainbow trout diet. An 8 week feeding trial was conducted to determine the effects of Vitaton versus astaxanthin on rearing factors, survival rate and visual flesh color of Rainbow trout (Oncorhnchynchus mykiss) with initial weight of 196±5. Four practical diets were formulated to contain 50 and 80 (ppm) of β- carotene and astaxanthin and also a control diet was prepared without any pigment. Each diet was fed to triplicate groups of fish rearing in fresh water. Fish were fed twice daily. The water temperature fluctuated from 12 to 15 (C˚) and also dissolved oxygen content was between 7 to 7.5 (mg/lit) during the experimental period. At the end of the experiment, growth and food utilization parameters and survival rate were unaffected by dietary treatments (p>0.05). Also, there was no significant difference between carcass yield within treatments (p>0.05). No significant difference recognized between visual flesh color (SalmoFan score) of fish fed Vitaton-containing diets. On the contrary, feeding on diets containing 50 and 80 (ppm) of astaxanthin, increased SalmoFan score (flesh astaxanthin concentration) from

The Perception of Omani E-consumers on the Importance and Performance of Dubai SMHs' Website Dimensions and Attributes

There is no doubt that Internet technology is widely used by hotels and its demand is constantly booming. Hotels have largely adopted website information services through using different interactive tools, dimensions and attributes to achieve excellence in functionality and usability but these do not necessary equate with website effectiveness. One way to investigate the effectiveness of hotel website is from the perspective ofe-consumers. This exploratory research is to investigate the perceived importance of websites effectiveness of some selected independent small and medium-sized hotels (SMHs) located in Dubai, United Arab Emirates, from the perspective of Omanie-consumers by using non-random sampling method. From 400 questionnaire addressed to respondents in 27 organizations in Muscat the capital city of Oman, 173 are valid. Findings of this study assist SMHs management in Dubai with the reallocation of their resources and efforts in order to supportebusiness development and to sustain a competitive advantage.

Teaching Students the Black Magic of Electromagnetic Compatibility

Introducing Electromagnetic Interference and Electromagnetic Compatibility, or “The Art of Black Magic", for engineering students might be a terrifying experience both for students and tutors. Removing the obstacle of large, expensive facilities like a fully fitted EMC laboratory and hours of complex theory, this paper demonstrates a design of a laboratory setup for student exercises, giving students experience in the basics of EMC/EMI problems that may challenge the functionality and stability of embedded system designs. This is done using a simple laboratory installation and basic measurement equipment such as a medium cost digital storage oscilloscope, at the cost of not knowing the exact magnitude of the noise components, but rather if the noise is significant or not, as well as the source of the noise. A group of students have performed a trial exercise with good results and feedback.

Hull Separation Optimization of Catamaran Unmanned Surface Vehicle Powered with Hydrogen Fuel Cell

This paper presents an optimization of the hull separation, i.e. transverse clearance. The main objective is to identify the feasible speed ranges and find the optimum transverse clearance considering the minimum wave-making resistance. The dimensions and the weight of hardware systems installed in the catamaran structured fuel cell powered USV (Unmanned Surface Vehicle) were considered as constraints. As the CAE (Computer Aided Engineering) platform FRIENDSHIP-Framework was used. The hull surface modeling, DoE (Design of Experiment), Tangent search optimization, tool integration and the process automation were performed by FRIENDSHIP-Framework. The hydrodynamic result was evaluated by XPAN the potential solver of SHIPFLOW.

Data-driven ASIC for Multichannel Sensors

An approach and its implementation in 0.18 m CMOS process of the multichannel ASIC for capacitive (up to 30 pF) sensors are described in the paper. The main design aim was to study an analog data-driven architecture. The design was done for an analog derandomizing function of the 128 to 16 structure. That means that the ASIC structure should provide a parallel front-end readout of 128 input analog sensor signals and after the corresponding fast commutation with appropriate arbitration logic their processing by means of 16 output chains, including analog-to-digital conversion. The principal feature of the ASIC is a low power consumption within 2 mW/channel (including a 9-bit 20Ms/s ADC) at a maximum average channel hit rate not less than 150 kHz.

A Fast Sensor Relocation Algorithm in Wireless Sensor Networks

Sensor relocation is to repair coverage holes caused by node failures. One way to repair coverage holes is to find redundant nodes to replace faulty nodes. Most researches took a long time to find redundant nodes since they randomly scattered redundant nodes around the sensing field. To record the precise position of sensor nodes, most researches assumed that GPS was installed in sensor nodes. However, high costs and power-consumptions of GPS are heavy burdens for sensor nodes. Thus, we propose a fast sensor relocation algorithm to arrange redundant nodes to form redundant walls without GPS. Redundant walls are constructed in the position where the average distance to each sensor node is the shortest. Redundant walls can guide sensor nodes to find redundant nodes in the minimum time. Simulation results show that our algorithm can find the proper redundant node in the minimum time and reduce the relocation time with low message complexity.

Two Wheels Balancing Robot with Line Following Capability

This project focuses on the development of a line follower algorithm for a Two Wheels Balancing Robot. In this project, ATMEGA32 is chosen as the brain board controller to react towards the data received from Balance Processor Chip on the balance board to monitor the changes of the environment through two infra-red distance sensor to solve the inclination angle problem. Hence, the system will immediately restore to the set point (balance position) through the implementation of internal PID algorithms at the balance board. Application of infra-red light sensors with the PID control is vital, in order to develop a smooth line follower robot. As a result of combination between line follower program and internal self balancing algorithms, we are able to develop a dynamically stabilized balancing robot with line follower function.

Harmonic Reduction In Three-Phase Parallel Connected Inverter

This paper presents the design and analysis of a parallel connected inverter configuration of. The configuration consists of parallel connected three-phase dc/ac inverter. Series resistors added to the inverter output to maintain same current in each inverter of the two parallel inverters, and to reduce the circulating current in the parallel inverters to the minimum. High frequency third harmonic injection PWM (THIPWM) employed to reduce the total harmonic distortion and to make maximum use of the voltage source. DSP was used to generate the THIPWM and the control algorithm for the converter. Selected experimental results have been shown to validate the proposed system.

Wangle the Organizational Internal and External Knowledge – A New Horizon for Sustaining the Business Stability

Knowledge is renowned as a significant component for sustaining competitive advantage and gives leading edge in business. This study emphasizes towards proper and effectuate utilization of internal and external (both either explicit or tacit) knowledge comes from stakeholders, highly supportive to combat with the challenges and enhance organizational productivity. Furthermore, it proposed a model under context of IRSA framework which facilitates the organization including flow of knowledge and experience sharing among employees. In discussion section an innovative model which indulges all functionality as mentioned in analysis section.

Hybrid Neuro Fuzzy Approach for Automatic Generation Control of Two -Area Interconnected Power System

The main objective of Automatic Generation Control (AGC) is to balance the total system generation against system load losses so that the desired frequency and power interchange with neighboring systems is maintained. Any mismatch between generation and demand causes the system frequency to deviate from its nominal value. Thus high frequency deviation may lead to system collapse. This necessitates a very fast and accurate controller to maintain the nominal system frequency. This paper deals with a novel approach of artificial intelligence (AI) technique called Hybrid Neuro-Fuzzy (HNF) approach for an (AGC). The advantage of this controller is that it can handle the non-linearities at the same time it is faster than other conventional controllers. The effectiveness of the proposed controller in increasing the damping of local and inter area modes of oscillation is demonstrated in a two area interconnected power system. The result shows that intelligent controller is having improved dynamic response and at the same time faster than conventional controller.

Seismic Response Reduction of Structures using Smart Base Isolation System

In this study, control performance of a smart base isolation system consisting of a friction pendulum system (FPS) and a magnetorheological (MR) damper has been investigated. A fuzzy logic controller (FLC) is used to modulate the MR damper so as to minimize structural acceleration while maintaining acceptable base displacement levels. To this end, a multi-objective optimization scheme is used to optimize parameters of membership functions and find appropriate fuzzy rules. To demonstrate effectiveness of the proposed multi-objective genetic algorithm for FLC, a numerical study of a smart base isolation system is conducted using several historical earthquakes. It is shown that the proposed method can find optimal fuzzy rules and that the optimized FLC outperforms not only a passive control strategy but also a human-designed FLC and a conventional semi-active control algorithm.

Dual-Link Hierarchical Cluster-Based Interconnect Architecture for 3D Network on Chip

Network on Chip (NoC) has emerged as a promising on chip communication infrastructure. Three Dimensional Integrate Circuit (3D IC) provides small interconnection length between layers and the interconnect scalability in the third dimension, which can further improve the performance of NoC. Therefore, in this paper, a hierarchical cluster-based interconnect architecture is merged with the 3D IC. This interconnect architecture significantly reduces the number of long wires. Since this architecture only has approximately a quarter of routers in 3D mesh-based architecture, the average number of hops is smaller, which leads to lower latency and higher throughput. Moreover, smaller number of routers decreases the area overhead. Meanwhile, some dual links are inserted into the bottlenecks of communication to improve the performance of NoC. Simulation results demonstrate our theoretical analysis and show the advantages of our proposed architecture in latency, throughput and area, when compared with 3D mesh-based architecture.

Coordination on Agrifood Supply Chain

Coordinated supply chain represents major challenges for the different actors involved in it, because each agent responds to individual interests. The paper presents a framework with the reviewed literature regarding the system's decision structure and nature of demand. Later, it characterizes an agri food supply chain in the Central Region of Colombia, it responds to a decentralized distribution system and a stochastic demand. Finally, the paper recommends coordinating the chain based on shared information, and mechanisms for each agent, as VMI (vendor-managed inventory) strategy for farmer-buyer relationship, information system for farmers and contracts for transportation service providers.

Analysis of Message Authentication in Turbo Coded Halftoned Images using Exit Charts

Considering payload, reliability, security and operational lifetime as major constraints in transmission of images we put forward in this paper a steganographic technique implemented at the physical layer. We suggest transmission of Halftoned images (payload constraint) in wireless sensor networks to reduce the amount of transmitted data. For low power and interference limited applications Turbo codes provide suitable reliability. Ensuring security is one of the highest priorities in many sensor networks. The Turbo Code structure apart from providing forward error correction can be utilized to provide for encryption. We first consider the Halftoned image and then the method of embedding a block of data (called secret) in this Halftoned image during the turbo encoding process is presented. The small modifications required at the turbo decoder end to extract the embedded data are presented next. The implementation complexity and the degradation of the BER (bit error rate) in the Turbo based stego system are analyzed. Using some of the entropy based crypt analytic techniques we show that the strength of our Turbo based stego system approaches that found in the OTPs (one time pad).

Impact of Computer-Mediated Communication on Virtual Teams- Performance: An Empirical Study

In a complex project environment, project teams face multi-dimensional communication problems that can ultimately lead to project breakdown. Team Performance varies in Face-to-Face (FTF) environment versus groups working remotely in a computermediated communication (CMC) environment. A brief review of the Input_Process_Output model suggested by James E. Driskell, Paul H. Radtke and Eduardo Salas in “Virtual Teams: Effects of Technological Mediation on Team Performance (2003)", has been done to develop the basis of this research. This model theoretically analyzes the effects of technological mediation on team processes, such as, cohesiveness, status and authority relations, counternormative behavior and communication. An empirical study described in this paper has been undertaken to test the “cohesiveness" of diverse project teams in a multi-national organization. This study uses both quantitative and qualitative techniques for data gathering and analysis. These techniques include interviews, questionnaires for data collection and graphical data representation for analyzing the collected data. Computer-mediated technology may impact team performance because of difference in cohesiveness among teams and this difference may be moderated by factors, such as, the type of communication environment, the type of task and the temporal context of the team. Based on the reviewed model, sets of hypotheses are devised and tested. This research, reports on a study that compared team cohesiveness among virtual teams using CMC and non-CMC communication mediums. The findings suggest that CMC can help virtual teams increase team cohesiveness among their members, making CMC an effective medium for increasing productivity and team performance.

A Robust Wheel Slip Controller for a Hybrid Braking System

A robust wheel slip controller for electric vehicles is introduced. The proposed wheel slip controller exploits the dynamics of electric traction drives and conventional hydraulic brakes for achieving maximum energy efficiency and driving safety. Due to the control of single wheel traction motors in combination with a hydraulic braking system, it can be shown, that energy recuperation and vehicle stability control can be realized simultaneously. The derivation of a sliding mode wheel slip controller accessing two drivetrain actuators is outlined and a comparison to a conventionally braked vehicle is shown by means of simulation.

Prediction of the Epileptic Events 'Epileptic Seizures' by Neural Networks and Expert Systems

Many studies have focused on the nonlinear analysis of electroencephalography (EEG) mainly for the characterization of epileptic brain states. It is assumed that at least two states of the epileptic brain are possible: the interictal state characterized by a normal apparently random, steady-state EEG ongoing activity; and the ictal state that is characterized by paroxysmal occurrence of synchronous oscillations and is generally called in neurology, a seizure. The spatial and temporal dynamics of the epileptogenic process is still not clear completely especially the most challenging aspects of epileptology which is the anticipation of the seizure. Despite all the efforts we still don-t know how and when and why the seizure occurs. However actual studies bring strong evidence that the interictal-ictal state transition is not an abrupt phenomena. Findings also indicate that it is possible to detect a preseizure phase. Our approach is to use the neural network tool to detect interictal states and to predict from those states the upcoming seizure ( ictal state). Analysis of the EEG signal based on neural networks is used for the classification of EEG as either seizure or non-seizure. By applying prediction methods it will be possible to predict the upcoming seizure from non-seizure EEG. We will study the patients admitted to the epilepsy monitoring unit for the purpose of recording their seizures. Preictal, ictal, and post ictal EEG recordings are available on such patients for analysis The system will be induced by taking a body of samples then validate it using another. Distinct from the two first ones a third body of samples is taken to test the network for the achievement of optimum prediction. Several methods will be tried 'Backpropagation ANN' and 'RBF'.

Construction and Performance Characterization of the Looped-Tube Travelling-Wave Thermoacoustic Engine with Ceramic Regenerator

In a travelling wave thermoacoustic device, the regenerator sandwiched between a pair of (hot and cold) heat exchangers constitutes the so-called thermoacoustic core, where the thermoacoustic energy conversion from heat to acoustic power takes place. The temperature gradient along the regenerator caused by the two heat exchangers excites and maintains the acoustic wave in the resonator. The devices are called travelling wave thermoacoustic systems because the phase angle difference between the pressure and velocity oscillation is close to zero in the regenerator. This paper presents the construction and testing of a thermoacoustic engine equipped with a ceramic regenerator, made from a ceramic material that is usually used as catalyst substrate in vehicles- exhaust systems, with fine square channels (900 cells per square inch). The testing includes the onset temperature difference (minimum temperature difference required to start the acoustic oscillation in an engine), the acoustic power output, thermal efficiency and the temperature profile along the regenerator.

Numerical Study of Fluid Mixing in a Grooved Micro-Channel with Wavy Sidewalls

In this work, we perform numerical simulation of fluid mixing in a floor-grooved micro-channel with wavy sidewalls which may impose perturbation on the helical flow induced by the slanted grooves on the channel floor. The perturbation is caused by separation vortices in the recesses of the wavy-walled channel as the Reynolds number is large enough. The results show that the effects of the wavy sidewalls of the present micromixer on the enhancement of fluid mixing increase with the increase of Reynolds number. The degree of mixing increases with the increase of the corrugation angle, until the angle is greater than 45 degrees. Besides, the pumping pressure of the micromixer increases with the increase of the corrugation angle monotonically. Therefore, we would suggest setting the corrugation angle of the wavy sidewalls to be 45 degrees.

Vibration Control of a Cantilever Beam Using a Tunable Vibration Absorber Embedded with ER Fluids

This paper investigates experimental studies on vibration suppression for a cantilever beam using an Electro-Rheological (ER) sandwich shock absorber. ER fluid (ERF) is a class of smart materials that can undergo significant reversible changes immediately in its rheological and mechanical properties under the influence of an applied electric field. Firstly, an ER sandwich beam is fabricated by inserting a starch-based ERF into a hollow composite beam. At the same time, experimental investigations are focused on the frequency response of the ERF sandwich beam. Second, the ERF sandwich beam is attached to a cantilever beam to become as a shock absorber. Finally, a fuzzy semi-active vibration control is designed to suppress the vibration of the cantilever beam via the ERF sandwich shock absorber. To check the consistency of the proposed fuzzy controller, the real-time implementation validated the performance of the controller.