An Agent Oriented Architecture to Supply Dynamic Document Generation in ERP Systems

One of the most important aspects expected from an ERP system is to mange user\administrator manual documents dynamically. Since an ERP package is frequently changed during its implementation in customer sites, it is often needed to add new documents and/or apply required changes to existing documents in order to cover new or changed capabilities. The worse is that since these changes occur continuously, the corresponding documents should be updated dynamically; otherwise, implementing the ERP package in the organization encounters serious risks. In this paper, we propose a new architecture which is based on the agent oriented vision and supplies the dynamic document generation expected from ERP systems using several independent but cooperative agents. Beside the dynamic document generation which is the main issue of this paper, the presented architecture will address some aspects of intelligence and learning capabilities existing in ERP.

Response of King Abdulla Canal Water to the Upgrade of As Samra WWTP

The response of King Abdulla Canal (KAC) water to the upgrade of As Samra Wastewater Treatment Plant which discharges its effluent to the Zarqa River is investigated. Time series quality data that extends between October 2005 and December 2009 obtained by a state of the art telemetric monitoring system were analyzed for COD, EC, TP and TN at two monitoring stations located upstream and downstream of the confluence of the Zarqa River with KAC. The samples- means and the t-test showed that there has been significant improvement in the quality of the KAC water for COD, and TP. However, the improvement in the TN was found statistically insignificant, whereas the EC of the KAC was unaffected by the upgrade. Comparing the selected parameters with the standards and guidelines for using treated wastewater in irrigation showed that the KAC water has improved towards meeting the required standards and guidelines for treated wastewater reuse in irrigation.

On the Influence of Certain Natural Factors on the Sperm Quality and Sexual Behaviour of Rams

In the Northern hemisphere, sheep reproduction is seasonal (September-November). Among several natural factors influencing the reproduction status of rams, we studied the daylight length and temperature. Rams from different breeds were studied: Merinos de Palas (half-precocious), Karakul de Botosani (halfbelated) and Turcana (belated breed, low reproductive plasticity). In Merinos de Palas, ejaculate volume during sexual repose is 51.3% from normal quantity. When autumn climate was experimentally induced, ejaculate volume reached 98.45% (Merinos), 94.97% (Karakul) and 97.59% (Turcana). Semen density increased from 1.031-1.033 till 1.035 after exposition to artificial light and temperature conditions. Spermatozoids mobility and sperm pH improved, passing over 82% and 6.75, values identical to those in the natural reproduction season. Behaviour analysis after photoperiodicity indicated that over 83.3% Merinos and Karakul males and all Turcana rams exteriorised normal and intense sexual reflexes. Certain effort and reduced expenses brought rams in good condition, producing higher quantity and quality sperm.

A Closed Form Solution for Hydrodynamic Pressure of Gravity Dams Reservoir with Effect of Viscosity under Dynamic Loading

Hydrodynamic pressures acting on upstream of concrete dams during an earthquake are an important factor in designing and assessing the safety of these structures in Earthquake regions. Due to inherent complexities, assessing exact hydrodynamic pressure is only feasible for problems with simple geometry. In this research, the governing equation of concrete gravity dam reservoirs with effect of fluid viscosity in frequency domain is solved and then compared with that in which viscosity is assumed zero. The results show that viscosity influences the reservoir-s natural frequency. In excitation frequencies near the reservoir's natural frequencies, hydrodynamic pressure has a considerable difference in compare to the results of non-viscose fluid.

Some Separations in Covering Approximation Spaces

Adopting Zakowski-s upper approximation operator C and lower approximation operator C, this paper investigates granularity-wise separations in covering approximation spaces. Some characterizations of granularity-wise separations are obtained by means of Pawlak rough sets and some relations among granularitywise separations are established, which makes it possible to research covering approximation spaces by logical methods and mathematical methods in computer science. Results of this paper give further applications of Pawlak rough set theory in pattern recognition and artificial intelligence.

A Universal Approach for the Intuitive Control of Mobile Robots using an AR/VR-based Interface

Mobile robots are used in a large field of scenarios, like exploring contaminated areas, repairing oil rigs under water, finding survivors in collapsed buildings, etc. Currently, there is no unified intuitive user interface (UI) to control such complex mobile robots. As a consequence, some scenarios are done without the exploitation of experience and intuition of human teleoperators. A novel framework has been developed to embed a flexible and modular UI into a complete 3-D virtual reality simulation system. This new approach wants to access maximum benefits of human operators. Sensor information received from the robot is prepared for an intuitive visualization. Virtual reality metaphors support the operator in his decisions. These metaphors are integrated into a real time stereo video stream. This approach is not restricted to any specific type of mobile robot and allows for the operation of different robot types with a consistent concept and user interface.

Response Quality Evaluation in Heterogeneous Question Answering System: A Black-box Approach

The evaluation of the question answering system is a major research area that needs much attention. Before the rise of domain-oriented question answering systems based on natural language understanding and reasoning, evaluation is never a problem as information retrieval-based metrics are readily available for use. However, when question answering systems began to be more domains specific, evaluation becomes a real issue. This is especially true when understanding and reasoning is required to cater for a wider variety of questions and at the same time achieve higher quality responses The research in this paper discusses the inappropriateness of the existing measure for response quality evaluation and in a later part, the call for new standard measures and the related considerations are brought forward. As a short-term solution for evaluating response quality of heterogeneous systems, and to demonstrate the challenges in evaluating systems of different nature, this research presents a black-box approach using observation, classification scheme and a scoring mechanism to assess and rank three example systems (i.e. AnswerBus, START and NaLURI).

Development of Cooling Load Demand Program for Building in Malaysia

Air conditioning is mainly to be used as human comfort medium. It has been use more often in country in which the daily temperatures are high. In scientific, air conditioning is defined as a process of controlling the moisture, cooling, heating and cleaning air. Without proper estimation of cooling load, big amount of waste energy been used because of unsuitable of air conditioning system are not considering to overcoming heat gains from surrounding. This is due to the size of the room is too big and the air conditioning has to use more energy to cool the room and the air conditioning is too small for the room. The studies are basically to develop a program to calculate cooling load. Through this study it is easy to calculate cooling load estimation. Furthermore it-s help to compare the cooling load estimation by hourly and yearly. Base on the last study that been done, the developed software are not user-friendly. For individual without proper knowledge of calculating cooling load estimation might be problem. Easy excess and user-friendly should be the main objective to design something. This program will allow cooling load able be estimate by any users rather than estimation by using rule of thumb. Several of limitation of case study is judged to sure it-s meeting to Malaysia building specification. Finally validation is done by comparison manual calculation and by developed program.

Influence of UV Treatment on the Electrooptical Properties of Indium Tin Oxide Films Used in Flexible Displays

Indium-tin oxide films are deposited by low plasma temperature RF sputtering on highly flexible modification of glycol polyethyleneterephtalate substrates. The produced layers are characterized with transparency over 82 % and sheet resistance of 86.9 Ω/square. The film’s conductivity was further improved by additional UV illumination from light source (365 nm), having power of 250 W. The influence of the UV exposure dose on the structural and electro-optical properties of ITO was investigated. It was established that the optimum time of illumination is 10 minutes and further UV treatment leads to polymer substrates degradation. Structural and bonds type analysis show that at longer treatment carbon atoms release and diffuse into ITO films, which worsen their electrical behavior. For the optimum UV dose the minimum sheet resistance was measured to be 19.2 Ω/square, and the maximum transparency remained almost unchanged – above 82 %.

Support Vector Machine based Intelligent Watermark Decoding for Anticipated Attack

In this paper, we present an innovative scheme of blindly extracting message bits from an image distorted by an attack. Support Vector Machine (SVM) is used to nonlinearly classify the bits of the embedded message. Traditionally, a hard decoder is used with the assumption that the underlying modeling of the Discrete Cosine Transform (DCT) coefficients does not appreciably change. In case of an attack, the distribution of the image coefficients is heavily altered. The distribution of the sufficient statistics at the receiving end corresponding to the antipodal signals overlap and a simple hard decoder fails to classify them properly. We are considering message retrieval of antipodal signal as a binary classification problem. Machine learning techniques like SVM is used to retrieve the message, when certain specific class of attacks is most probable. In order to validate SVM based decoding scheme, we have taken Gaussian noise as a test case. We generate a data set using 125 images and 25 different keys. Polynomial kernel of SVM has achieved 100 percent accuracy on test data.

Properties of the Research Teaching Organization of Military Masters

In the article there have been revealed the properties of designing the research teaching the military masters and in the context it has been offered the program of mastering by the masters military men the methodology of research work, in the course of practical teaching activity there has been considered the developed and approbated model of organization of the process of mastering by the masters the methodology of research work. As a whole, the research direction of master preparation leaves its sign to the content of education, forms of organization of educational process, scientific work of masters. In this connection the offered in the article properties of organization of research teaching and a model of organization of mastering by the masters military men the methodology of research work can be taken into account when designing the content of master preparation.

Roll of Membership functions in Fuzzy Logic for Prediction of Shoot Length of Mustard Plant Based on Residual Analysis

The selection for plantation of a particular type of mustard plant depending on its productivity (pod yield) at the stage of maturity. The growth of mustard plant dependent on some parameters of that plant, these are shoot length, number of leaves, number of roots and roots length etc. As the plant is growing, some leaves may be fall down and some new leaves may come, so it can not gives the idea to develop the relationship with the seeds weight at mature stage of that plant. It is not possible to find the number of roots and root length of mustard plant at growing stage that will be harmful of this plant as roots goes deeper to deeper inside the land. Only the value of shoot length which increases in course of time can be measured at different time instances. Weather parameters are maximum and minimum humidity, rain fall, maximum and minimum temperature may effect the growth of the plant. The parameters of pollution, water, soil, distance and crop management may be dominant factors of growth of plant and its productivity. Considering all parameters, the growth of the plant is very uncertain, fuzzy environment can be considered for the prediction of shoot length at maturity of the plant. Fuzzification plays a greater role for fuzzification of data, which is based on certain membership functions. Here an effort has been made to fuzzify the original data based on gaussian function, triangular function, s-function, Trapezoidal and L –function. After that all fuzzified data are defuzzified to get normal form. Finally the error analysis (calculation of forecasting error and average error) indicates the membership function appropriate for fuzzification of data and use to predict the shoot length at maturity. The result is also verified using residual (Absolute Residual, Maximum of Absolute Residual, Mean Absolute Residual, Mean of Mean Absolute Residual, Median of Absolute Residual and Standard Deviation) analysis.

Stability Analysis of Impulsive BAM Fuzzy Cellular Neural Networks with Distributed Delays and Reaction-diffusion Terms

In this paper, a class of impulsive BAM fuzzy cellular neural networks with distributed delays and reaction-diffusion terms is formulated and investigated. By employing the delay differential inequality and inequality technique developed by Xu et al., some sufficient conditions ensuring the existence, uniqueness and global exponential stability of equilibrium point for impulsive BAM fuzzy cellular neural networks with distributed delays and reaction-diffusion terms are obtained. In particular, the estimate of the exponential convergence rate is also provided, which depends on system parameters, diffusion effect and impulsive disturbed intention. It is believed that these results are significant and useful for the design and applications of BAM fuzzy cellular neural networks. An example is given to show the effectiveness of the results obtained here.

Examination of the Water and Nutrient Utilization of Maize Hybrids on Chernozem Soil

The research was set up on chernozem soil at the Látókép AGTC MÉK research area of the University of Debrecen in Hungary. We examined the yield, the yield production per 1kg NPK fertilizer and the water and nutrient utilization of hybrid PR37N01 and PR37M81 in 2013. We found that PR37N01 produced the most yield at the level of N120+P (17,476kg ha-1) while PR37M81 reached the highest yield at level N150+PK (16,754kg ha-1). Studies related to yield production per 1kg NPK indicated that the best results were achieved at level N30+PK compared to the control treatment. Yield production per 1kg NPK was17.6kg kg-1 by P37N01 and 44.2kg kg-1 by PR37M81. By comparing the water utilization of hybrids we found that the worst water utilization results were reached in the control treatment (PR37N01: 26.2kg mm-1, PR37M81: 19.5kg mm-1). The best water utilization values were produced at level N120+PK in the case of hybrid PR37N01 (32.1kg mm-1) and at N150+PK in the case of hybrid PR37M81 (30.8kg mm-1). We established the values of the nutrient reaction and the fertilizer optimum of hybrids. We discovered a strong relationship between the amount of fertilizer applied and the yield produced (r2= 0.8228–0.9515). The best nutrient response was induced by hybrid PR37N01, while the weakest results were reached by hybrid PR37M81.

Design and Simulation of Electromagnetic Flow Meter for Circular Pipe Type

Electromagnetic flow meter by measuring the varying of magnetic flux, which is related to the velocity of conductive flow, can measure the rate of fluids very carefully and precisely. Electromagnetic flow meter operation is based on famous Faraday's second Law. In these equipments, the constant magnetostatic field is produced by electromagnet (winding around the tube) outside of pipe and inducting voltage that is due to conductive liquid flow is measured by electrodes located on two end side of the pipe wall. In this research, we consider to 2-dimensional mathematical model that can be solved by numerical finite difference (FD) solution approach to calculate induction potential between electrodes. The fundamental concept to design the electromagnetic flow meter, exciting winding and simulations are come out by using MATLAB and PDE-Tool software. In the last stage, simulations results will be shown for improvement and accuracy of technical provision.

Architecture of Speech-based Registration System

In this era of technology, fueled by the pervasive usage of the internet, security is a prime concern. The number of new attacks by the so-called “bots", which are automated programs, is increasing at an alarming rate. They are most likely to attack online registration systems. Technology, called “CAPTCHA" (Completely Automated Public Turing test to tell Computers and Humans Apart) do exist, which can differentiate between automated programs and humans and prevent replay attacks. Traditionally CAPTCHA-s have been implemented with the challenge involved in recognizing textual images and reproducing the same. We propose an approach where the visual challenge has to be read out from which randomly selected keywords are used to verify the correctness of spoken text and in turn detect the presence of human. This is supplemented with a speaker recognition system which can identify the speaker also. Thus, this framework fulfills both the objectives – it can determine whether the user is a human or not and if it is a human, it can verify its identity.

Influence of Port Geometry on Thrust Transient of Solid Propellant Rockets at Liftoff

Numerical studies have been carried out using a two dimensional code to examine the influence of pressure / thrust transient of solid propellant rockets at liftoff. This code solves unsteady Reynolds-averaged thin-layer Navier–Stokes equations by an implicit LU-factorization time-integration method. The results from the parametric study indicate that when the port is narrow there is a possibility of increase in pressure / thrust-rise rate due to relatively high flame spread rate. Parametric studies further reveal that flame spread rate can be altered by altering the propellant properties, igniter jet characteristics and nozzle closure burst pressure without altering the grain configuration and/or the mission demanding thrust transient. We observed that when the igniter turbulent intensity is relatively low the vehicle could liftoff early due to the early flow choking of the rocket nozzle. We concluded that the high pressurization-rate has structural implications at liftoff in addition to transient burning effect. Therefore prudent selection of the port geometry and the igniter, for meeting the mission requirements, within the given envelop are meaningful objectives for any designer for the smooth liftoff of solid propellant rockets.

Measuring the Efficiency of Medical Equipment

the reliability analysis of the medical equipments can help to increase the availability and the efficiency of the systems. In this manuscript we present a simple method of decomposition that could be easily applied on the complex medical systems. Using this method we can easily calculate the effect of the subsystems or components on the reliability of the overall system. Furthermore, to investigate the effect of subsystems or components on system performance, we perform a numerical study varying every time the worst reliability of subsystem or component with another which has higher reliability. It can also be useful to engineers and designers of medical equipment, who wishes to optimize the complex systems.

Auto-Parking System via Intelligent Computation Intelligence

In this paper, an intelligent automatic parking control method is proposed. First, the dynamical equation of the rear parking control is derived. Then a fuzzy logic control is proposed to perform the parking planning process. Further, a rear neural network is proposed for the steering control. Through the simulations and experiments, the intelligent auto-parking mode controllers have been shown to achieve the demanded goals with satisfactory control performance and to guarantee the system robustness under parametric variations and external disturbances. To improve some shortcomings and limitations in conventional parking mode control and further to reduce consumption time and prime cost.

Approaches and Schemes for Storing DTDIndependent XML Data in Relational Databases

The volume of XML data exchange is explosively increasing, and the need for efficient mechanisms of XML data management is vital. Many XML storage models have been proposed for storing XML DTD-independent documents in relational database systems. Benchmarking is the best way to highlight pros and cons of different approaches. In this study, we use a common benchmarking scheme, known as XMark to compare the most cited and newly proposed DTD-independent methods in terms of logical reads, physical I/O, CPU time and duration. We show the effect of Label Path, extracting values and storing in another table and type of join needed for each method-s query answering.