DACS3:Embedding Individual Ant Behavior in Ant Colony System

Ants are fascinating creatures that demonstrate the ability to find food and bring it back to their nest. Their ability as a colony, to find paths to food sources has inspired the development of algorithms known as Ant Colony Systems (ACS). The principle of cooperation forms the backbone of such algorithms, commonly used to find solutions to problems such as the Traveling Salesman Problem (TSP). Ants communicate to each other through chemical substances called pheromones. Modeling individual ants- ability to manipulate this substance can help an ACS find the best solution. This paper introduces a Dynamic Ant Colony System with threelevel updates (DACS3) that enhance an existing ACS. Experiments were conducted to observe single ant behavior in a colony of Malaysian House Red Ants. Such behavior was incorporated into the DACS3 algorithm. We benchmark the performance of DACS3 versus DACS on TSP instances ranging from 14 to 100 cities. The result shows that the DACS3 algorithm can achieve shorter distance in most cases and also performs considerably faster than DACS.

Cold Hardiness in Near Isogenic Lines of Bread Wheat (Triticum Aestivum L. em. Thell.)

Low temperature (LT) is one of the most abiotic stresses causing loss of yield in wheat (T. aestivum). Four major genes in wheat (Triticum aestivum L.) with the dominant alleles designated Vrn–A1,Vrn–B1,Vrn–D1 and Vrn4, are known to have large effects on the vernalization response, but the effects on cold hardiness are ambiguous. Poor cold tolerance has restricted winter wheat production in regions of high winter stress [9]. It was known that nearly all wheat chromosomes [5] or at least 10 chromosomes of 21 chromosome pairs are important in winter hardiness [15]. The objective of present study was to clarify the role of each chromosome in cold tolerance. With this purpose we used 20 isogenic lines of wheat. In each one of these isogenic lines only a chromosome from ‘Bezostaya’ variety (a winter habit cultivar) was substituted to ‘Capple desprez’ variety. The plant materials were planted in controlled conditions with 20º C and 16 h day length in moderately cold areas of Iran at Karaj Agricultural Research Station in 2006-07 and the acclimation period was completed for about 4 weeks in a cold room with 4º C. The cold hardiness of these isogenic lines was measured by LT50 (the temperature in which 50% of the plants are killed by freezing stress).The experimental design was completely randomized block design (RCBD)with three replicates. The results showed that chromosome 5A had a major effect on freezing tolerance, and then chromosomes 1A and 4A had less effect on this trait. Further studies are essential to understanding the importance of each chromosome in controlling cold hardiness in wheat.

The Job Satisfaction of the Employees with the Organization Retention of Metropolitan Waterworks Authority at Bangkhen

This research aimed to study correlation between work satisfaction and organization core value of officers in Waterworks Authority, Bangkean Branch. Sample group of the study was 112 officers who worked in the Waterworks Authority, Bangkean Branch. Questionnaires were employed as a research tools, while, Percentage, Mean, Standard Deviation, T-test, One-way ANOVA, and Pearson Product Moment Correlation were claimed as statistics used in this study. Researcher found that overall and individual aspects of work satisfaction namely, work characteristic, work progress, and colleagues significantly correlated with organization core value in aspect of perception in choice of work at 0.5, 0.01, and 0.01 respectively. Also, such aspects were compatible with income at .05 which indicated the low level of correlation, mid low correlation respectively at the same direction, same direction, opposite direction, and same direction, correspondingly.

Factors Related to Being Good Membership Behavior in Organization of Personnel at Suan Sunandha Rajabhat University

The aims of this study were to compare the differences of being good membership behavior among faculties and staffs of Suan Sunandha Rajabhat University with different sex, age, income, education, marital status, and working period, and investigate the relationships between organizational commitment and being good membership behavior. The research methodology employed a questionnaire as a quantitative method. The respondents were 305 faculties and staffs of Suan Sunandha Rajabhat University. This research used Percentage, Mean, Standard Deviation, t-test, One-Way ANOVA Analysis of Variance, and Pearson’s Product Moment Correlation Coefficient in data analysis. The results showed that organizational commitment among faculties and staffs of Suan Sunandha Rajabhat University was at a high level. In addition, differences in sex, age, income, education, marital status, and working period revealed differences in being good membership behavior. The results also indicated that organizational commitment was significantly related to being good membership behavior.

Robust UKF Insensitive to Measurement Faults for Pico Satellite Attitude Estimation

In the normal operation conditions of a pico satellite, conventional Unscented Kalman Filter (UKF) gives sufficiently good estimation results. However, if the measurements are not reliable because of any kind of malfunction in the estimation system, UKF gives inaccurate results and diverges by time. This study, introduces Robust Unscented Kalman Filter (RUKF) algorithms with the filter gain correction for the case of measurement malfunctions. By the use of defined variables named as measurement noise scale factor, the faulty measurements are taken into the consideration with a small weight and the estimations are corrected without affecting the characteristic of the accurate ones. Two different RUKF algorithms, one with single scale factor and one with multiple scale factors, are proposed and applied for the attitude estimation process of a pico satellite. The results of these algorithms are compared for different types of measurement faults in different estimation scenarios and recommendations about their applications are given.

Development of Face Surrogate for Impact Protection Design for Cyclist

Bicycle usage for exercise, recreation, and commuting to work in Australia shows that pedal cycling is the fourth most popular activity with 10.6% increase in participants between 2001 and 2007. As with other means of transport, accident and injury becomes common although mandatory bicycle helmet wearing has been introduced. The research aims to develop a face surrogate made of sandwich of rigid foam and rubber sheets to represent human facial bone under blunt impact. The facial surrogate will serve as an important test device for further development of facial-impact protection for cyclist. A test procedure was developed to simulate the energy of impact and record data to evaluate the effect of impact on facial bones. Drop tests were performed to establish a suitable combination of materials. It was found that the sandwich structure of rigid extruded-polystyrene foam (density of 40 kg/m3 with a pattern of 6-mm-holes), Neoprene rubber sponge, and Abrasaflex rubber backing, had impact characteristics comparable to that of human facial bone. In particular, the foam thickness of 30 mm and 25 mm was found suitable to represent human zygoma (cheekbone) and maxilla (upper-jaw bone), respectively.

Influence of Taguchi Selected Parameters on Properties of CuO-ZrO2 Nanoparticles Produced via Sol-gel Method

The present paper discusses the selection of process parameters for obtaining optimal nanocrystallites size in the CuOZrO2 catalyst. There are some parameters changing the inorganic structure which have an influence on the role of hydrolysis and condensation reaction. A statistical design test method is implemented in order to optimize the experimental conditions of CuO-ZrO2 nanoparticles preparation. This method is applied for the experiments and L16 orthogonal array standard. The crystallites size is considered as an index. This index will be used for the analysis in the condition where the parameters vary. The effect of pH, H2O/ precursor molar ratio (R), time and temperature of calcination, chelating agent and alcohol volume are particularity investigated among all other parameters. In accordance with the results of Taguchi, it is found that temperature has the greatest impact on the particle size. The pH and H2O/ precursor molar ratio have low influences as compared with temperature. The alcohol volume as well as the time has almost no effect as compared with all other parameters. Temperature also has an influence on the morphology and amorphous structure of zirconia. The optimal conditions are determined by using Taguchi method. The nanocatalyst is studied by DTA-TG, XRD, EDS, SEM and TEM. The results of this research indicate that it is possible to vary the structure, morphology and properties of the sol-gel by controlling the above-mentioned parameters.

A New Composition Method of Admissible Support Vector Kernel Based on Reproducing Kernel

Kernel function, which allows the formulation of nonlinear variants of any algorithm that can be cast in terms of dot products, makes the Support Vector Machines (SVM) have been successfully applied in many fields, e.g. classification and regression. The importance of kernel has motivated many studies on its composition. It-s well-known that reproducing kernel (R.K) is a useful kernel function which possesses many properties, e.g. positive definiteness, reproducing property and composing complex R.K by simple operation. There are two popular ways to compute the R.K with explicit form. One is to construct and solve a specific differential equation with boundary value whose handicap is incapable of obtaining a unified form of R.K. The other is using a piecewise integral of the Green function associated with a differential operator L. The latter benefits the computation of a R.K with a unified explicit form and theoretical analysis, whereas there are relatively later studies and fewer practical computations. In this paper, a new algorithm for computing a R.K is presented. It can obtain the unified explicit form of R.K in general reproducing kernel Hilbert space. It avoids constructing and solving the complex differential equations manually and benefits an automatic, flexible and rigorous computation for more general RKHS. In order to validate that the R.K computed by the algorithm can be used in SVM well, some illustrative examples and a comparison between R.K and Gaussian kernel (RBF) in support vector regression are presented. The result shows that the performance of R.K is close or slightly superior to that of RBF.

Effect of Laser Power and Powder Flow Rate on Properties of Laser Metal Deposited Ti6Al4V

Laser Metal Deposition (LMD) is an additive manufacturing process with capabilities that include: producing new part directly from 3 Dimensional Computer Aided Design (3D CAD) model, building new part on the existing old component and repairing an existing high valued component parts that would have been discarded in the past. With all these capabilities and its advantages over other additive manufacturing techniques, the underlying physics of the LMD process is yet to be fully understood probably because of high interaction between the processing parameters and studying many parameters at the same time makes it further complex to understand. In this study, the effect of laser power and powder flow rate on physical properties (deposition height and deposition width), metallurgical property (microstructure) and mechanical (microhardness) properties on laser deposited most widely used aerospace alloy are studied. Also, because the Ti6Al4V is very expensive, and LMD is capable of reducing buy-to-fly ratio of aerospace parts, the material utilization efficiency is also studied. Four sets of experiments were performed and repeated to establish repeatability using laser power of 1.8 kW and 3.0 kW, powder flow rate of 2.88 g/min and 5.67 g/min, and keeping the gas flow rate and scanning speed constant at 2 l/min and 0.005 m/s respectively. The deposition height / width are found to increase with increase in laser power and increase in powder flow rate. The material utilization is favoured by higher power while higher powder flow rate reduces material utilization. The results are presented and fully discussed.

Kernel Matching versus Inverse Probability Weighting: A Comparative Study

Recent quasi-experimental evaluation of the Canadian Active Labour Market Policies (ALMP) by Human Resources and Skills Development Canada (HRSDC) has provided an opportunity to examine alternative methods to estimating the incremental effects of Employment Benefits and Support Measures (EBSMs) on program participants. The focus of this paper is to assess the efficiency and robustness of inverse probability weighting (IPW) relative to kernel matching (KM) in the estimation of program effects. To accomplish this objective, the authors compare pairs of 1,080 estimates, along with their associated standard errors, to assess which type of estimate is generally more efficient and robust. In the interest of practicality, the authorsalso document the computationaltime it took to produce the IPW and KM estimates, respectively.

A Fuzzy Logic Based Model to Predict Surface Roughness of A Machined Surface in Glass Milling Operation Using CBN Grinding Tool

Nowadays, the demand for high product quality focuses extensive attention to the quality of machined surface. The (CNC) milling machine facilities provides a wide variety of parameters set-up, making the machining process on the glass excellent in manufacturing complicated special products compared to other machining processes. However, the application of grinding process on the CNC milling machine could be an ideal solution to improve the product quality, but adopting the right machining parameters is required. In glass milling operation, several machining parameters are considered to be significant in affecting surface roughness. These parameters include the lubrication pressure, spindle speed, feed rate and depth of cut. In this research work, a fuzzy logic model is offered to predict the surface roughness of a machined surface in glass milling operation using CBN grinding tool. Four membership functions are allocated to be connected with each input of the model. The predicted results achieved via fuzzy logic model are compared to the experimental result. The result demonstrated settlement between the fuzzy model and experimental results with the 93.103% accuracy.

Study on the Variation Effects of Diverging Angleon Characteristics of Flow in Converging and Diverging Ducts by Numerical Method

The present paper develops and validates a numerical procedure for the calculation of turbulent combustive flow in converging and diverging ducts and throuh simulation of the heat transfer processes, the amount of production and spread of Nox pollutant has been measured. A marching integration solution procedure employing the TDMA is used to solve the discretized equations. The turbulence model is the Prandtl Mixing Length method. Modeling the combustion process is done by the use of Arrhenius and Eddy Dissipation method. Thermal mechanism has been utilized for modeling the process of forming the nitrogen oxides. Finite difference method and Genmix numerical code are used for numerical solution of equations. Our results indicate the important influence of the limiting diverging angle of diffuser on the coefficient of recovering of pressure. Moreover, due to the intense dependence of Nox pollutant to the maximum temperature in the domain with this feature, the Nox pollutant amount is also in maximum level.

Comparative Emission Analysis of Gasoline/LPG Automotive Bifuel Engine

This paper presents comparative emission study of newly introduced gasoline/LPG bifuel automotive engine in Indian market. Emissions were tested as per LPG-Bharat stage III driving cycle. Emission tests were carried out for urban cycle and extra urban cycle. Total time for urban and extra urban cycle was 1180 sec. Engine was run in LPG mode by using conversion system. Emissions were tested as per standard procedure and were compared. Corrected emissions were computed by deducting ambient reading from sample reading. Paper describes detail emission test procedure and results obtained. CO emissions were in the range of38.9 to 111.3 ppm. HC emissions were in the range of 18.2 to 62.6 ppm. Nox emissions were 08 to 3.9 ppm and CO2 emissions were from 6719.2 to 8051 ppm. Paper throws light on emission results of LPG vehicles recently introduced in Indian automobile market. Objectives of this experimental study were to measure emissions of engines in gasoline & LPG mode and compare them.

A New Framework and a Model for Product Development with an Application in the Telecommunications Services Sector

This paper argues that a product development exercise involves in addition to the conventional stages, several decisions regarding other aspects. These aspects should be addressed simultaneously in order to develop a product that responds to the customer needs and that helps realize objectives of the stakeholders in terms of profitability, market share and the like. We present a framework that encompasses these different development dimensions. The framework shows that a product development methodology such as the Quality Function Deployment (QFD) is the basic tool which allows definition of the target specifications of a new product. Creativity is the first dimension that enables the development exercise to live and end successfully. A number of group processes need to be followed by the development team in order to ensure enough creativity and innovation. Secondly, packaging is considered to be an important extension of the product. Branding strategies, quality and standardization requirements, identification technologies, design technologies, production technologies and costing and pricing are also integral parts to the development exercise. These dimensions constitute the proposed framework. The paper also presents a mathematical model used to calculate the design targets based on the target costing principle. The framework is used to study a case of a new product development in the telecommunications services sector.

Matrix Based Synthesis of EXOR dominated Combinational Logic for Low Power

This paper discusses a new, systematic approach to the synthesis of a NP-hard class of non-regenerative Boolean networks, described by FON[FOFF]={mi}[{Mi}], where for every mj[Mj]∈{mi}[{Mi}], there exists another mk[Mk]∈{mi}[{Mi}], such that their Hamming distance HD(mj, mk)=HD(Mj, Mk)=O(n), (where 'n' represents the number of distinct primary inputs). The method automatically ensures exact minimization for certain important selfdual functions with 2n-1 points in its one-set. The elements meant for grouping are determined from a newly proposed weighted incidence matrix. Then the binary value corresponding to the candidate pair is correlated with the proposed binary value matrix to enable direct synthesis. We recommend algebraic factorization operations as a post processing step to enable reduction in literal count. The algorithm can be implemented in any high level language and achieves best cost optimization for the problem dealt with, irrespective of the number of inputs. For other cases, the method is iterated to subsequently reduce it to a problem of O(n-1), O(n-2),.... and then solved. In addition, it leads to optimal results for problems exhibiting higher degree of adjacency, with a different interpretation of the heuristic, and the results are comparable with other methods. In terms of literal cost, at the technology independent stage, the circuits synthesized using our algorithm enabled net savings over AOI (AND-OR-Invert) logic, AND-EXOR logic (EXOR Sum-of- Products or ESOP forms) and AND-OR-EXOR logic by 45.57%, 41.78% and 41.78% respectively for the various problems. Circuit level simulations were performed for a wide variety of case studies at 3.3V and 2.5V supply to validate the performance of the proposed method and the quality of the resulting synthesized circuits at two different voltage corners. Power estimation was carried out for a 0.35micron TSMC CMOS process technology. In comparison with AOI logic, the proposed method enabled mean savings in power by 42.46%. With respect to AND-EXOR logic, the proposed method yielded power savings to the tune of 31.88%, while in comparison with AND-OR-EXOR level networks; average power savings of 33.23% was obtained.

Geometric and Material Nonlinear Analysis of Reinforced Concrete Structure Considering Soil-Structure Interaction

In the present research, a finite element model is presented to study the geometrical and material nonlinear behavior of reinforced concrete plane frames considering soil-structure interaction. The nonlinear behaviors of concrete and reinforcing steel are considered both in compression and tension up to failure. The model takes account also for the number, diameter, and distribution of rebar along every cross section. Soil behavior is taken into consideration using four different models; namely: linear-, nonlinear Winkler's model, and linear-, nonlinear continuum model. A computer program (NARC) is specially developed in order to perform the analysis. The results achieved by the present model show good agreement with both theoretical and experimental published literature. The nonlinear behavior of a rectangular frame resting on soft soil up to failure using the proposed model is introduced for demonstration.

Analysis of the Ambient Media Approach of Advertisement Samples from the Adman Awards and Symposium under the Category of Outdoor and Ambience

This research is to study the types of products and services that employs 'ambient media and respective techniques in its advertisement materials. Data collection has been done via analyses of a total of 62 advertisements that employed ambient media approach in Thailand during the years 2004 to 2011. The 62 advertisement were qualifying advertisements of the Adman Awards & Symposium under the category of Outdoor & Ambience. Analysis results reveal that there is a total of 14 products and services that chooses to utilize ambient media in its advertisement. Amongst all ambient media techniques, 'intrusion' uses the value of a medium in its representation of content most often. Following intrusion is 'interaction', where consumers are invited to participate and interact with the advertising materials. 'Illusion' ranks third in its ability to subject the viewers to distortions of reality that makes the division between reality and fantasy less clear.

Gender Perspective Considerations in Disasters like Earthquakes and Floods of Pakistan

From past many decades human beings are suffering from plethora of natural disasters. Occurrence of disasters is a frequent process; it changes conceptual myths as more and more advancement are made. Although we are living in technological era but in developing countries like Pakistan disasters are shaped by socially constructed roles. The need is to understand the most vulnerable group of society i.e. females; their issues are complex in nature because of undermined gender status in the society. There is a need to identify maximum issues regarding females and to enhance the achievement of millennium development goals (MDGs). Gender issues are of great concern all around the globe including Pakistan. Here female visibility in society is low, and also during disasters, the failure to understand the reality that concentrates on double burden including productive and reproductive care. Women have to contribute a lot in society so we need to make them more disaster resilient. For this non-structural measures like awareness, trainings and education must be carried out. In rural and in urban settings in any disaster like earthquake or flood, elements like gender perspective, their age, physical health, demographic issues contribute towards vulnerability. In Pakistan the gender issues in disasters were of less concern before 2005 earthquake and 2010 floods. Significant achievements are made after 2010 floods when gender and child cell was created to provide all facilities to women and girls. The aim of the study is to highlight all necessary facilities in a disaster to build coping mechanism in females from basic rights till advance level including education.

A Technique for Improving the Performance of Median Smoothers at the Corners Characterized by Low Order Polynomials

Median filters with larger windows offer greater smoothing and are more robust than the median filters of smaller windows. However, the larger median smoothers (the median filters with the larger windows) fail to track low order polynomial trends in the signals. Due to this, constant regions are produced at the signal corners, leading to the loss of fine details. In this paper, an algorithm, which combines the ability of the 3-point median smoother in preserving the low order polynomial trends and the superior noise filtering characteristics of the larger median smoother, is introduced. The proposed algorithm (called the combiner algorithm in this paper) is evaluated for its performance on a test image corrupted with different types of noise and the results obtained are included.

A Nonlinear ODE System for the Unsteady Hydrodynamic Force – A New Approach

We propose a reduced-ordermodel for the instantaneous hydrodynamic force on a cylinder. The model consists of a system of two ordinary differential equations (ODEs), which can be integrated in time to yield very accurate histories of the resultant force and its direction. In contrast to several existing models, the proposed model considers the actual (total) hydrodynamic force rather than its perpendicular or parallel projection (the lift and drag), and captures the complete force rather than the oscillatory part only. We study and provide descriptions of the relationship between the model parameters, evaluated utilizing results from numerical simulations, and the Reynolds number so that the model can be used at any arbitrary value within the considered range of 100 to 500 to provide accurate representation of the force without the need to perform timeconsuming simulations and solving the partial differential equations (PDEs) governing the flow field.