Behavior of Concrete Slab Track on Asphalt Trackbed Subjected to Thermal Load

Concrete track slab and asphalt trackbed are being introduced in Korea for providing good bearing capacity, durability to the track and comfortable rideness to passengers. Such a railway system has been designed by the train load so as to ensure stability. But there is lack of research and design for temperature changes which influence the behavior characteristics of concrete and asphalt. Therefore, in this study, the behavior characteristics of concrete track slab subjected to varying temperatures were analyzed through structural analysis using the finite element analysis program. The structural analysis was performed by considering the friction condition on the boundary surfaces in order to analyze the interaction between concrete slab and asphalt trackbed. As a result, the design of the railway system should be designed by considering the interaction and temperature changes between concrete track slab and asphalt trackbed.

Structural Safety Evaluation of Zip-Line Due to Dynamic Impact Load

In recent year, with recent increase of interest towards leisure sports, increased number of Zip-Line or Zip-Wire facilities has built. Many researches have been actively conducted on the emphasis of the cable and the wire at the bridge. However, very limited researches have been conducted on the safety of the Zip-Line structure. In fact, fall accidents from Zip-Line have been reported frequently. Therefore, in this study, the structural safety of Zip-Line under dynamic impact loading condition were evaluated on the previously installed steel cable for leisure (Zip-Line), using 3-dimensional nonlinear Finite Element (FE) model. The result from current study would assist assurance of systematic stability of Zip-Line.

Phase Transition Characteristics of Flame-Synthesized Gamma-Al2O3 Nanoparticles with Heat Treatment

In this study, the phase transition characteristics of flame-synthesized γ-Al2O3 nanoparticles to α-Al2O3 have been investigated. The nanoparticles were synthesized by using a coflow hydrogen diffusion flame. The phase transition and particle characteristics of the Al2O3 nanoparticles were determined by examining the crystalline structure and the shape of the collected nanoparticles before and after the heat treatment. The morphology and crystal structure of the Al2O3 nanoparticles were determined from SEM images and XRD analyses, respectively. The measured specific surface area and averaged particle size were 63.44m2/g and 23.94nm, respectively. Based on the scanning electron microscope images and x-ray diffraction patterns, it is believed that the onset temperature of the phase transition to α-Al2O3 was existed near 1200oC. The averaged diameters of the sintered particles heat treated at 1,260oC were approximately 80nm.

Modeling Moisture and Density Behaviors of Wood in Biomass Torrefaction Environments

Worldwide interests for the renewable energy are increasing due to environmental and climate changes from traditional petroleum related energy sources. To account for these social needs, ligneous biomass energy is considered as one of the environmentally friend energy solutions. The wood torrefaction process is a feasible method to improve the properties of the biomass fuel and makes the wood have low moisture, lower smoke emission and increased heating value. In this work, therefore, the moisture evaporation model which largely affects energy efficiency of ligneous biomass through moisture contents and heating value relative to its weight is studied with numerical modeling approach by analyzing the effects of torrefaction furnace temperature. The results show that the temperature and moisture fraction of wood decrease by increasing the furnace temperature. When the torrefaction temperature is lower than 423K, there were little changes of the moisture fraction in the wood. Also, it can be found that charcoal is produced more slowly when the torrefaction temperature is lower than 573K.

Analysis of Drying Kinetics of a Slurry Droplet in the Falling Rate Period of Spray Drying

The heat and mass transfer was investigated during the falling rate period of spray drying of a slurry droplet. The effect of the porosity of crust layer formed from primary particles during liquid evaporation was studied numerically using the developed mathematical model which takes into account the heat and mass transfer in the core and crust regions, the movement of the evaporation interface, and the external heat and mass transfer between the drying air and the droplet surface. It was confirmed that the heat transfer through the crust layer was more intense in the case of the dense droplet than the loose one due to the enhanced thermal conduction resulting in the higher average droplet temperature. The mass transfer was facilitated in the crust layer of loose droplet owing to the large pore space available for diffusion of water vapor from the evaporation interface to the outer droplet surface. The longer drying time is required for the droplet of high porosity to reach the final moisture content than that for the dense one due to the larger amount of water to be evaporated during the falling rate.

Poisoning Admission in Children Hospital in Benghazi-Libya, Three Years Review of Medical Record

Estimation of the magnitude and causes of poisoning was the objective of the current study. A retrospective study of medical records of all poisoning children admitted to Benghazi Children Hospital in Libya from January 2008 up to December 2010. Number of children admitted was 244; the age ranged from less than one to 13 years old. Most of cases were admitted with mild symptom and the majority of them were boys. Only few cases admitted to intensive care unit and there was no mortality recorded through the period of study. Age group 1 to 3 years (50.8%) had the highest frequency of admission and the peak of admission was during summer. The most common cause of admission was due to ingestion of medication (53.69%), House hold product exposure (26.64%) was the second causes of admission while, 19.67% of admissions were due to Food poisoning. Almost all admitted cases were accidental and medicines were the most consumed substances in addition, improper storage of toxic agents were the first risk factor of poisoning. Present results indicated that, children poisoning seems to be a common pediatric care problem which need to control and prevent.

Effectiveness of Business Software Systems Development and Enhancement Projects versus Work Effort Estimation Methods

Execution of Business Software Systems (BSS) Development and Enhancement Projects (D&EP) is characterized by the exceptionally low effectiveness, leading to considerable financial losses. The general reason for low effectiveness of such projects is that they are inappropriately managed. One of the factors of proper BSS D&EP management is suitable (reliable and objective) method of project work effort estimation since this is what determines correct estimation of its major attributes: project cost and duration. BSS D&EP is usually considered to be accomplished effectively if product of a planned functionality is delivered without cost and time overrun. The goal of this paper is to prove that choosing approach to the BSS D&EP work effort estimation has a considerable influence on the effectiveness of such projects execution.

Dynamic Ultrasound Scatterer Simulation Model Using Field-II and FEM for Speckle Tracking

There is a growing interest in the use of ultrasonic speckle tracking for biomedical image formation of tissue deformation. Speckle tracking is angle independent and has an ability to differentiate soft tissue into benign and malignant regions. In this paper a simulation model for dynamic ultrasound scatterer is presented. The model composes Field-II ultrasonic scatterers and FEM (ANSYS-11) nodes as a regional tissue deformation. A performance evaluation is presented on axial displacement and strain fields estimation of a uniformly elastic model, using speckle tracking based 1D cross-correlation of optimally segmented pre and post-deformation frames. Optimum correlation window length is investigated in terms of highest signal-to-noise ratio (SNR) for a selected region of interest of a smoothed displacement field. Finally, gradient based strain field of both smoothed and non-smoothed displacement fields are compared. Simulation results from the model are shown to compare favorably with FEM results.

The Analysis of Hazard and Sensitivity of Potential Resource of Emergency Water Supply

The paper deals with the analysis of hazards and sensitivity of potential resource of emergency water supply of population in a selected region of the Czech Republic. The procedure of identification and analysis of hazards and sensitivity is carried out on the basis of a unique methodology of classifying the drinking water resources earmarked for emergency supply of population. The hazard identification is based on a general register of hazards for individual parts of hydrological structure and the elements of technological equipment. It is followed by a semi-quantitative point indexation for the activation of each identified hazard, i.e. fires of anthropogenic origin, flood and the increased radioactive background accompanied by the leak of radon. Point indexation of sensitivity has been carried out at the same time. The analysis is the basis for a risk assessment of potential resource of emergency supply of population and the subsequent classification of such resource within the system of crisis planning.

Effect of Geographical Co-Ordinates on the Parameters in the Rain Rate Model for Radio Propagation Applications

Rain attenuation plays a lot of roles in the design of satellite and terrestrial microwave radio links, hence a good knowledge of its effect is of great interest to Engineers and scientists in that it is often required to give a high level of accuracy of the rainrate distribution that expresses rainrate from the lowest value to the highest. This study proposes a model to express rainrate parameters alpha (α) and beta (β) as a function of geographical location at 0.01% of the time. The tropical locations used in the development of the effect were Ilorin, Ile-Ife, Douala, Dar-es-Selam, Nairobi, Lusaka, and Brazilia. This expression clearly confirms the variability of rainfall from place to place. When consistency test was carried out using the expression to generate rainrate for each location examined, the result obtained was reliable for rain intensities between 5mm/h and 200mm/h. The variability of α and β with latitude also shows that different latitudes have different cumulative rain distribution. The model proposed in this study would be one of the useful tools to Radio Engineers since the precipitation effect in the design of satellite and terrestrial microwave radio links is among the factors to consider when designing communication systems.

Optimizing Hadoop Block Placement Policy and Cluster Blocks Distribution

The current Hadoop block placement policy do not fairly and evenly distributes replicas of blocks written to datanodes in a Hadoop cluster. This paper presents a new solution that helps to keep the cluster in a balanced state while an HDFS client is writing data to a file in Hadoop cluster. The solution had been implemented, and test had been conducted to evaluate its contribution to Hadoop distributed file system. It has been found that, the solution has lowered global execution time taken by Hadoop balancer to 22 percent. It also has been found that, Hadoop balancer respectively over replicate 1.75 and 3.3 percent of all re-distributed blocks in the modified and original Hadoop clusters. The feature that keeps the cluster in a balanced state works as a core part to Hadoop system and not just as a utility like traditional balancer. This is one of the significant achievements and uniqueness of the solution developed during the course of this research work.

Effects of Position and Cut-Out Lengths on the Axial Crushing Behavior of Aluminum Tubes: Experimental and Simulation

Axial compression tests are performed on circular tubes made of Aluminum EN AW 6060 (AlMgSi0.5 alloy) in T66 state. All the received tubes have the uniform outer diameter of 40mm and thickness of 1.5mm. Two different lengths 100mm and 200mm are used in the analysis. After performing compression tests on the uniform tube, important crashworthy parameters like peak force, average force, crush efficiency and energy absorption are measured. The present paper has given importance to increase the percentage of crush efficiency without decreasing the value energy absorption of a tube, so a circumferential notch was introduced on the top section of the tube. The effects of position and cut-out lengths of a circumferential notch on the crush efficiency are well explained with relative deformation modes and force-displacement curves. The numerical simulations were carried on the software tool ANSYS/LS-DYNA. It is seen that the numerical results are reasonably good in agreement with the experimental results. 

Genetic Algorithm for In-Theatre Military Logistics Search-and-Delivery Path Planning

Discrete search path planning in time-constrained uncertain environment relying upon imperfect sensors is known to be hard, and current problem-solving techniques proposed so far to compute near real-time efficient path plans are mainly bounded to provide a few move solutions. A new information-theoretic –based open-loop decision model explicitly incorporating false alarm sensor readings, to solve a single agent military logistics search-and-delivery path planning problem with anticipated feedback is presented. The decision model consists in minimizing expected entropy considering anticipated possible observation outcomes over a given time horizon. The model captures uncertainty associated with observation events for all possible scenarios. Entropy represents a measure of uncertainty about the searched target location. Feedback information resulting from possible sensor observations outcomes along the projected path plan is exploited to update anticipated unit target occupancy beliefs. For the first time, a compact belief update formulation is generalized to explicitly include false positive observation events that may occur during plan execution. A novel genetic algorithm is then proposed to efficiently solve search path planning, providing near-optimal solutions for practical realistic problem instances. Given the run-time performance of the algorithm, natural extension to a closed-loop environment to progressively integrate real visit outcomes on a rolling time horizon can be easily envisioned. Computational results show the value of the approach in comparison to alternate heuristics.

Radiation Workers’ Occupational Doses: Are We Really Careful or Overconscious

The present study represents the occupational radiation doses received by selected workers of Nuclear Institute of Medicine and Radiotherapy (NIMRA) Jamshoro Pakistan and conducted to discuss about how we be careful and try to avoid make ourselves overconscious. Film badges with unique identification number were issued to radiation worker to detect occupational radiation doses. In this study, only 08 workers with high radiation doses were assessed amongst 35 radiation workers during the period of January 2012 to December 2012. The selected radiation workers’ occupational doses were according to designated work areas and in the range of 1.21 to 7.78 mSv (mili Sieveret) out of the annual dose limit of 20 mSv. By the comparison of different studies and earth’s HNBR (High Natural Background Radiation) locations’ doses, it is concluded that the worker’s high doses are of magnitude of HNBR Regions and were in the acceptable range of National and International regulatory bodies so we must not to show any type of overconsciousness but be careful in handling the radioactive sources.

Development of a Bacterial Resistant Concrete for Use in Low Cost Kitchen Floors

The degrading effect due to bacterial growth on the structural integrity of concrete floor surfaces is predictable; this consequently cause development of surface micro cracks in which organisms penetrate through resulting in surface spalling. Hence, the need to develop mix design meeting the requirement of floor surfaces exposed to aggressive agent to improve certain material properties with good workability, extended lifespan and low cost is essential. In this work, tests were performed to examine the microbial activity on kitchen floor surfaces and the effect of adding admixtures. The biochemical test shows the existence of microorganisms (E.coli, Streptococcus) on newly casted structure. Of up to 6% porosity was reduced and improvement on structural integrity was observed upon adding mineral admixtures from the concrete mortar. The SEM result after 84 days of curing specimens, shows that chemical admixtures have significant role to enable retard bacterial penetration and good quality structure is achieved.

Thermodynamic Analysis of Ventilated Façades under Operating Conditions in Southern Spain

In this work we study the thermodynamic behavior of some ventilated facades under summer operating conditions in Southern Spain. Under these climatic conditions, indoor comfort implies a high energetic demand due to high temperatures that usually are reached in this season in the considered geographical area. The aim of this work is to determine if during summer operating conditions in Southern Spain, ventilated façades provide some energy saving compared to the non-ventilated façades and to deduce their behavior patterns in terms of energy efficiency. The modelization of the air flow in the channel has been performed by using Navier-Stokes equations for thermodynamic flows. Numerical simulations have been carried out with a 2D Finite Element approach. This way, we analyze the behavior of ventilated façades under different weather conditions as variable wind, variable temperature and different levels of solar irradiation. CFD computations show the combined effect of the shading of the external wall and the ventilation by the natural convection into the air gap achieve a reduction of the heat load during the summer period. This reduction has been evaluated by comparing the thermodynamic performances of two ventilated and two unventilated façades with the same geometry and thermophysical characteristics.

Influence of Initial Surface Roughness on Severe Wear Volume for SUS304 Austenitic Stainless Steels

Simultaneous measurements of the curves for wear versus distance, wear rate versus distance, and coefficient of friction versus distance were performed in situ to distinguish the transition from severe running-in wear to mild wear. The effects of the initial surface roughness on the severe running-in wear volume were investigated. Disk-on-plate friction and wear tests were carried out with SUS304 austenitic stainless steel in contact with itself under repeated dry sliding conditions at room temperature. The wear volume was dependent on the initial surface roughness. The wear volume when the initial surfaces on the plate and disk had dissimilar roughness was lower than that when these surfaces had similar roughness. For the dissimilar roughness, the wear volume decreased with decreasing initial surface roughness and reached a minimum; it stayed nearly constant as the roughness was less than the mean size of the oxide particles.

Comparative Life Cycle Assessment of High Barrier Polymer Packaging for Selecting Resource Efficient and Environmentally Low-Impact Materials

In this study tree types of multilayer gas barrier plastic packaging films were compared using life cycle assessment as a tool for resource efficient and environmentally low-impact materials selection. The first type of multilayer packaging film (PET-AlOx/LDPE) consists of polyethylene terephthalate with barrier layer AlOx (PET-AlOx) and low density polyethylene (LDPE). The second type of polymer film (PET/PE-EVOH-PE) is made of polyethylene terephthalate (PET) and co-extrusion film PE-EVOH-PE as barrier layer. And the third one type of multilayer packaging film (PET-PVOH/LDPE) is formed from polyethylene terephthalate with barrier layer PVOH (PET-PVOH) and low density polyethylene (LDPE). All of analyzed packaging has significant impact to resource depletion, because of raw materials extraction and energy use and production of different kind of plastics. Nevertheless the impact generated during life cycle of functional unit of II type of packaging (PET/PE-EVOH-PE) was about 25% lower than impact generated by I type (PET-AlOx/LDPE) and III type (PET-PVOH/LDPE) of packaging. Result revealed that the contribution of different gas barrier type to the overall environmental problem of packaging is not significant. The impact are mostly generated by using energy and materials during raw material extraction and production of different plastic materials as plastic polymers material as PE, LDPE and PET, but not gas barrier materials as AlOx, PVOH and EVOH. The LCA results could be useful in different decision-making processes, for selecting resource efficient and environmentally low-impact materials.

Characterization of a Novel Galactose-Binding Lectin Homologue from Tenebrio molitor

An expressed sequence tag (EST) analysis provideus portions of expressed genes. We have constructed cDNA library and determined randomly sequences from cDNA library clones of T. molitor injected with acholeplasma lysate. We identified the homologous to a galectin gene. As the result of cloning and characterization of novel, we found that the protein has an open reading frame (ORF) of 495 bp, with 164 amino acid residues and molecular weight of 18.5 kDa. To characterize the role of novel Tm-galectin in immune system, we quantified the mRNA level of galectin at different times after treatment with immune elicitors. The galectin mRNA was up-regulated about 7-folds within 18 hrs. This suggests that Tm-galectin is a novel member of animal lectins, and has a role in the process of pathogen recognition. Our study would be helpful for the study on immune defense system and signaling cascade.

The Effect in vitro of Flavonoid Aglycones Extracts from Roots of Date Palm Cultivars on Fusarium oxysporum F. Sp. albedinis

Date production in North Africa is facing a worrying slowdown and a decline because of Fusarium wilt or bayoud date palm (Phoenix dactylifera L., caused by Fusarium oxysporum f. sp. albedinis (F. o. a). The objective of this work is to study the in vitro effect of flavonoid aglycones extracted from the roots of two cultivars of date palm (one sensitive to bayoud (Deglet Nour) and the other resistant (Takerboucht)) on the growth and production fusaric acid of the pathogen. Results show that during the first week of development of F. o. a on potato dextrose liquid medium, the flavonoid aglycones extracts of the susceptible cultivar roots stimulates mycelial growth as well as conidiogenesis of F.o.a, nevertheless it has no effect on the synthesis of fusaric acid. However, the flavonoid aglycones extract of resistant cultivar roots stimulates mycelial growth and decreases both the number of conidia production and fusaric acid. It therefore appears possible that the resistant cultivar aglycones have two types of action: they either inhibit the synthesis of fusaric acid, or they metabolize this toxin into hydrosoluble product, this is called detoxification.