Mechanical and Chemical Properties of Zn-Ni-Al2O3 Nanocomposite Coatings

Zn alloy and composite coatings are widely used in buildings and structures, automobile and fasteners industries to protect steel component from corrosion. In this paper, Zn-Ni-Al2O3 nanocomposite coatings were electrodeposited on mild steel using a novel sol enhanced electroplating method. In this method, transparent Al2O3 sol was added into the acidic Zn-Ni bath to produced Zn-Ni- Al2O3 nanocomposite coatings. The effect of alumina sol on the electrodeposition process, and coating properties was investigated using cyclic voltammetry, XRD, ESEM and Tafel test. Results from XRD tests showed that the structure of all coatings was single γ- Ni5Zn21 phase. Cyclic voltammetry results showed that the electrodeposition overpotential was lower in the presence of alumina sol in the bath, and caused the reduction potential of Zn-Ni to shift to more positive values. Zn-Ni-Al2O3 nanocomposite coatings produced more uniform and compact deposits, with fine grained microstructure when compared to Zn-Ni coatings. The corrosion resistance of Zn-Ni coatings was improved significantly by incorporation of alumina nanoparticles into the coatings.

An Environmentally Friendly Approach towards the Conservation of Vernacular Architecture

Contemporary theories of sustainability, concerning the natural and built environment, have recently introduced an environmental attitude towards the architectural design that, in turn, affects the practice of conservation and reuse of the existing building stock. This paper presents an environmentally friendly approach towards the conservation of vernacular architecture and it is based on the results of a research program which involved the investigation of sustainable design elements of traditional buildings in Cyprus. The research in question showed that Cypriot vernacular architecture gave more emphasis on cooling rather than heating strategies. Another notable finding of the investigation was the great importance given to courtyards as they enhance considerably, and in various ways, the microclimatic conditions of the immediate environment with favorable results throughout the year. Moreover, it was shown that the reduction in temperature fluctuation observed in the closed and semi-open spaces, compared to the respective temperature fluctuation of the external environment -due to the thermal inertia of the building envelope- helps towards the achievement of more comfortable living conditions within traditional dwellings. This paper concludes with a proposal of a sustainable approach towards the conservation of the existing environment and the introduction of new environmental criteria for the conservation of traditional buildings, beyond the aesthetic, morphological and structural ones that are generally applied.

The Oxidative Damage Marker for Sodium Formate Exposure on Lymphocytes

Sodium formate is the chemical substance used for food additive. Catalase is the important antioxidative enzyme in protecting the cell from oxidative damage by reactive oxygen species (ROS). The resultant level of oxidative stress in sodium formatetreated lymphocytes was investigated. The sodium formate concentrations of 0.05, 0.1, 0.2, 0.4 and 0.6 mg/mL were treated in human lymphocytes for 12 hours. After 12 treated hours, catalase activity change was measured in sodium formate-treated lymphocytes. The results showed that the sodium formate concentrations of 0.4 and 0.6 mg/mL significantly decreased catalase activities in lymphocytes (P < 0.05). The change of catalase activity in sodium formate-treated lymphocytes may be the oxidative damage marker for detect sodium formate exposure in human.

The Feasibility of Using Milled Glass Wastes in Concrete to Resist Freezing-Thawing Action

The using of waste materials in the construction industry can reduce the dependence on the natural aggregates which are going at the end to deplete. The glass waste is generated in a huge amount which can make one of its disposals in concrete industry effective not only as a green solution but also as an advantage to enhance the performance of mechanical properties and durability of concrete. This article reports the performance of concrete specimens containing different percentages of milled glass waste as a partial replacement of cement (Powder), when they are subject to cycles of freezing and thawing. The tests were conducted on 75-mm cubes and 75 x 75 x 300-mm prisms. Compressive strength based on laboratory testing and non-destructive ultrasonic pulse velocity test were performed during the action of freezing-thawing cycles (F/T). The results revealed that the incorporation of glass waste in concrete mixtures is not only feasible but also showed generally better strength and durability performance than control concrete mixture. It may be said that the recycling of waste glass in concrete mixes is not only a disposal way, but also it can be an exploitation in concrete industry.

Development of a Mobile Image-Based Reminder Application to Support Tuberculosis Treatment in Africa

This paper presents the design, development and evaluation of an application prototype developed to support tuberculosis (TB) patients’ treatment adherence. The system makes use of graphics and voice reminders as opposed to text messaging to encourage patients to follow their medication routine. To evaluate the effect of the prototype applications, participants were given mobile phones on which the reminder system was installed. Thirty-eight people, including TB health workers and patients from Zanzibar, Tanzania, participated in the evaluation exercises. The results indicate that the participants found the mobile image-based application is useful to support TB treatment. All participants understood and interpreted the intended meaning of every image correctly. The study findings revealed that the use of a mobile visualbased application may have potential benefit to support TB patients (both literate and illiterate) in their treatment processes.

Voices and Pictures from an Online Course and a Face to Face Course

In light of the technological development and its introduction into the field of education, an online course was designed in parallel to the 'conventional' course for teaching the ''Qualitative Research Methods''. This course aimed to characterize learning-teaching processes in a 'Qualitative Research Methods' course studied in two different frameworks. Moreover, its objective was to explore the difference between the culture of a physical learning environment and that of online learning. The research monitored four learner groups, a total of 72 students, for two years, two groups from the two course frameworks each year. The courses were obligatory for M.Ed. students at an academic college of education and were given by one female-lecturer. The research was conducted in the qualitative method as a case study in order to attain insights about occurrences in the actual contexts and sites in which they transpire. The research tools were open-ended questionnaire and reflections in the form of vignettes (meaningful short pictures) to all students as well as an interview with the lecturer. The tools facilitated not only triangulation but also collecting data consisting of voices and pictures of teaching and learning. The most prominent findings are: differences between the two courses in the change features of the learning environment culture for the acquisition of contents and qualitative research tools. They were manifested by teaching methods, illustration aids, lecturer's profile and students' profile.

De-commoditisation of Food: How Organic Farmers from the Madrid Region Reconnect Products and Places through Web Marketing

The growth of organic farming practices in the last few decades is continuing to stimulate the international debate about this alternative food market. As a part of a PhD project research about embeddedness in Alternative Food Networks (AFNs), this paper focuses on the promotional aspects of organic farms websites from the Madrid region. As a theoretical tool, some knowledge categories drawn on the geographic studies literature are used to classify the many ideas expressed in the web pages. By analysing texts and pictures of 30 websites, the study aims to question how and to what extent actors from organic world communicate to the potential customers their personal beliefs about farming practices, products qualities, and ecological and social benefits. Moreover, the paper raises the question of whether organic farming laws and regulations lack of completeness about the social and cultural aspects of food.

Robotics and Embedded Systems Applied to the Buried Pipeline Inspection

The work aims to develop a robot in the form of autonomous vehicle to detect, inspection and mapping of underground pipelines through the ATmega328 Arduino platform. Hardware prototyping is very similar to C / C ++ language that facilitates its use in robotics open source, resembles PLC used in large industrial processes. The robot will traverse the surface independently of direct human action, in order to automate the process of detecting buried pipes, guided by electromagnetic induction. The induction comes from coils that send the signal to the Arduino microcontroller contained in that will make the difference in intensity and the treatment of the information, and then this determines actions to electrical components such as relays and motors, allowing the prototype to move on the surface and getting the necessary information. This change of direction is performed by a stepper motor with a servo motor. The robot was developed by electrical and electronic assemblies that allowed test your application. The assembly is made up of metal detector coils, circuit boards and microprocessor, which interconnected circuits previously developed can determine, process control and mechanical actions for a robot (autonomous car) that will make the detection and mapping of buried pipelines plates. This type of prototype can prevent and identifies possible landslides and they can prevent the buried pipelines suffer an external pressure on the walls with the possibility of oil leakage and thus pollute the environment.

Solar Calculations of Modified Arch (Semi Spherical) Type Greenhouse System for Bayburt City

Greenhouses offer us suitable conditions which can be controlled easily for the growth of the plant and they are made by using a covering material that allows the sun light entering into the system. Covering material can be glass, fiber glass, plastic or another transparent element. This study investigates the solar energy usability rates and solar energy benefitting rates of a semi-spherical (modified arch) type greenhouse system according to different orientations and positions which exists under climatic conditions of Bayburt. In the concept of this study it is tried to determine the best direction and best sizes of a semi-spherical greenhouse to get best solar benefit from the sun. To achieve this aim a modeling study is made by using MATLAB. However, this modeling study is run for some determined shapes and greenhouses it can be used for different shaped greenhouses or buildings. The basic parameters are determined as greenhouse azimuth angle, the rate of size of long edge to short and seasonal solar energy gaining of greenhouse. The optimum azimuth angles of 400, 300, 250, 200, 150, 100, 50 m2 modified arch greenhouse are 90o, 90o, 35o, 35o, 34o, 33o and 22o while their optimum k values (ratio of length to width) are 10, 10, 10, 10, 6, 4 and 4 respectively. Positioning the buildings in order to get more solar heat energy in winter and less in summer brings out energy and money savings and increases the comfort.

Building a Hierarchical, Granular Knowledge Cube

A knowledge base stores facts and rules about the world that applications can use for the purpose of reasoning. By applying the concept of granular computing to a knowledge base, several advantages emerge. These can be harnessed by applications to improve their capabilities and performance. In this paper, the concept behind such a construct, called a granular knowledge cube, is defined, and its intended use as an instrument that manages to cope with different data types and detect knowledge domains is elaborated. Furthermore, the underlying architecture, consisting of the three layers of the storing, representing, and structuring of knowledge, is described. Finally, benefits as well as challenges of deploying it are listed alongside application types that could profit from having such an enhanced knowledge base.

The Estimation Method of Stress Distribution for Beam Structures Using the Terrestrial Laser Scanning

This study suggests the estimation method of stress distribution for the beam structures based on TLS (Terrestrial Laser Scanning). The main components of method are the creation of the lattices of raw data from TLS to satisfy the suitable condition and application of CSSI (Cubic Smoothing Spline Interpolation) for estimating stress distribution. Estimation of stress distribution for the structural member or the whole structure is one of the important factors for safety evaluation of the structure. Existing sensors which include ESG (Electric strain gauge) and LVDT (Linear Variable Differential Transformer) can be categorized as contact type sensor which should be installed on the structural members and also there are various limitations such as the need of separate space where the network cables are installed and the difficulty of access for sensor installation in real buildings. To overcome these problems inherent in the contact type sensors, TLS system of LiDAR (light detection and ranging), which can measure the displacement of a target in a long range without the influence of surrounding environment and also get the whole shape of the structure, has been applied to the field of structural health monitoring. The important characteristic of TLS measuring is a formation of point clouds which has many points including the local coordinate. Point clouds are not linear distribution but dispersed shape. Thus, to analyze point clouds, the interpolation is needed vitally. Through formation of averaged lattices and CSSI for the raw data, the method which can estimate the displacement of simple beam was developed. Also, the developed method can be extended to calculate the strain and finally applicable to estimate a stress distribution of a structural member. To verify the validity of the method, the loading test on a simple beam was conducted and TLS measured it. Through a comparison of the estimated stress and reference stress, the validity of the method is confirmed.

Seasonal Variation of Polycyclic Aromatic Hydrocarbons Associated with PM10 in Győr, Hungary

The main objective of this study was to assess the seasonal variation of atmospheric polycyclic aromatic hydrocarbon (PAH) concentrations associated with PM10 in an urban site of Győr, Hungary. A total of 112 PM10 aerosol samples were collected in the years of 2012 and 2013 and analyzed for PAHs by gas chromatography method. The total PAH concentrations (sum of the concentrations of 19 individual PAH compounds) ranged from 0.19 to 70.16 ng/m3 with the mean value of 12.29 ng/m3. Higher concentrations of both total PAHs and benzo[a]pyrene (BaP) were detected in samples collected in the heating seasons. Using BaPequivalent potency index on the carcinogenic PAH concentration data, the local population appears to be exposed to significantly higher cancer risk in the heating seasons. However, the comparison of the BaP and total PAH concentrations observed for Győr with other cities it was found that the PAH levels in Győr generally corresponded to the EU average.

Association of Overweight and Obesity with Breast Cancer

Breast cancer is in the top rate of cancer. We analyzed the prevalence of obesity and its association with breast cancer and finally we reviewed 25 article that 320 patient and 320 control which enrolled to our study. The distribution of breast cancer patients and controls with respect to their anthropometric indices in patients with higher weight, which was statistically significant (60.2 ± 10.2 kg) compared with control group (56.1 ± 11.3 kg). The body mass index of patients was (26.06+/-3.42) and significantly higher than the control group (24.1+/-1.7). Obesity leads to increased levels of adipose tissue in the body that can be stored toxins and carcinogens to produce a continuous supply. Due to the high level of fat and the role of estrogen in a woman which is endogenous estrogen of the tumor and regulates the activities of growth steroids, obesity has confirmed as a risk factor for breast cancer. Our study and other studies have shown that obesity is a risk factor for breast cancer. And it can be prevented with a weight loss intervention for breast cancer in the future.

An Investigation on Vegetable Oils as Potential Insulating Liquid

While choosing insulating oil, characteristic features such as thermal cooling, endurance, efficiency and being environment-friendly should be considered. Mineral oils are referred as petroleum-based oil. In this study, vegetable oils investigated as an alternative insulating liquid to mineral oil. Dissipation factor, breakdown voltage, relative dielectric constant and resistivity changes with the frequency and voltage of mineral, rapeseed and nut oils were measured. Experimental studies were performed according to ASTM D924 and IEC 60156 standards.

Modeling Residential Space Heating Energy for Romania

This paper proposes a linear model for optimizing domestic energy consumption in Romania. The particularity of the model is that it is putting in competition both tangible technologies and thermal insulation projects with different financing modes. The model is optimizing the energy system by minimizing the global discounted cost in household sector, by integrating residential lighting, space heating, hot water, combined space heating – hot water, as well as space cooling, in a monolithic model. Another demand sector included is the passenger transport. This paper focuses on space heating part, analyzing technical and economic issues related to investment decisions to envelope and insulate buildings, in order to minimize energy consumption.

Reuse of Huge Industrial Areas

Brownfields are one of the most important problems that must be solved by today's cities. The topic of this article is description of developing a comprehensive transformation of postindustrial area of the former iron factory national cultural heritage lower Vítkovice. City of Ostrava used to be industrial superpower of the Czechoslovak Republic, especially in the area of coal mining and iron production, after declining industrial production and mining in the 80s left many unused areas of former factories generally brownfields and backfields. Since the late 90s we are observing how the city officials or private entities seeking to remedy this situation. Regeneration of brownfields is a very expensive and long-term process. The area is now rebuilt for tourists and residents of the city in the entertainment, cultural, and social center. It was necessary do the reconstruction of the industrial monuments. Equally important was the construction of new buildings, which helped reusing of the entire complex. This is a unique example of transformation of technical monuments and completion of necessary new objects, so that the area could start working again and reintegrate back into the urban system.

Analytical Evaluation on Structural Performance and Optimum Section of CHS Damper

This study aims to evaluate the effective size, section and structural characteristics of circular hollow steel (CHS) damper. CHS damper is among steel dampers which are used widely for seismic energy dissipation because they are easy to install, maintain and are inexpensive. CHS damper dissipates seismic energy through metallic deformation due to the geometrical elasticity of circular shape and fatigue resistance around connection part. After calculating the effective size, which is found to be height to diameter ratio of √3, nonlinear FE analyses were carried out to evaluate the structural characteristics and effective section (diameter-to-ratio).

Microwave Sintering and Its Application on Cemented Carbides

Cemented carbides, owing to their excellent mechanical properties, have been of immense interest in the field of hard materials for the past few decades. A number of processing techniques have been developed to obtain high quality carbide tools, with a wide range of grain size depending on the application and requirements. Microwave sintering is one of the heating processes, which has been used to prepare a wide range of materials including ceramics. A deep understanding of microwave sintering and its contribution towards control of grain growth and on deformation of the resulting carbide materials requires further studies and attention. In addition, the effect of binder materials and their behavior during microwave sintering is another area that requires clear understanding. This review aims to focus on microwave sintering, providing information of how the process works and what type of materials it is best suited for. In addition, a closer look at some microwave sintered Tungsten Carbide-Cobalt samples will be taken and discussed, highlighting some of the key issues and challenges faced in this research area.

Phosphorus Reduction in Plain and Fully Formulated Oils Using Fluorinated Additives

The reduction of phosphorus and sulfur in engine oil are the main topics of this paper. Very reproducible boundary lubrication tests were conducted as part of Design of Experiment software (DOE) to study the behavior of fluorinated catalyst iron fluoride (FeF3), and polutetrafluoroethylene or Teflon (PTFE) in developing environmentally friendly (reduced P and S) anti-wear additives for future engine oil formulations. Multi-component Chevron fully formulated oil (GF3) and Chevron plain oil were used with the addition of PTFE and catalyst to characterize and analyze their performance. Lower phosphorus blends were the goal of the model solution. Experiments indicated that new sub-micron FeF3 catalyst played an important role in preventing breakdown of the tribofilm.

An Analytical Study of FRP-Concrete Bridge Superstructures

It is a major challenge to build a bridge superstructure that has long-term durability and low maintenance requirements. A solution to this challenge may be to use new materials or to implement new structural systems. Fiber Reinforced Polymer (FRP) composites have continued to play an important role in solving some of persistent problems in infrastructure applications because of its high specific strength, light weight, and durability. In this study, the concept of the hybrid FRP-concrete structural systems is applied to a bridge superstructure. The hybrid FRP-concrete bridge superstructure is intended to have durable, structurally sound, and cost effective hybrid system that will take full advantage of the inherent properties of both FRP materials and concrete. In this study, two hybrid FRP-concrete bridge systems were investigated. The first system consists of trapezoidal cell units forming a bridge superstructure. The second one is formed by arch cells. The two systems rely on using cellular components to form the core of the bridge superstructure, and an outer shell to warp around those cells to form the integral unit of the bridge. Both systems were investigated analytically by using finite element (FE) analysis. From the rigorous FE studies, it was concluded that first system is more efficient than the second.