An Anatomically-Based Model of the Nerves in the Human Foot

Sensory nerves in the foot play an important part in the diagnosis of various neuropathydisorders, especially in diabetes mellitus.However, a detailed description of the anatomical distribution of the nerves is currently lacking. A computationalmodel of the afferent nerves inthe foot may bea useful tool for the study of diabetic neuropathy. In this study, we present the development of an anatomically-based model of various major sensory nerves of the sole and dorsal sidesof the foot. In addition, we presentan algorithm for generating synthetic somatosensory nerve networks in the big-toe region of a right foot model. The algorithm was based on a modified version of the Monte Carlo algorithm, with the capability of being able to vary the intra-epidermal nerve fiber density in differentregionsof the foot model. Preliminary results from the combinedmodel show the realistic anatomical structure of the major nerves as well as the smaller somatosensory nerves of the foot. The model may now be developed to investigate the functional outcomes of structural neuropathyindiabetic patients.

New Approach for the Modeling and the Implementation of the Object-Relational Databases

Conception is the primordial part in the realization of a computer system. Several tools have been used to help inventors to describe their software. These tools knew a big success in the relational databases domain since they permit to generate SQL script modeling the database from an Entity/Association model. However, with the evolution of the computer domain, the relational databases proved their limits and object-relational model became used more and more. Tools of present conception don't support all new concepts introduced by this model and the syntax of the SQL3 language. We propose in this paper a tool of help to the conception and implementation of object-relational databases called «NAVIGTOOLS" that allows the user to generate script modeling its database in SQL3 language. This tool bases itself on the Entity/Association and navigational model for modeling the object-relational databases.

Applicability of Diatom-Based Water Quality Assessment Indices in Dari Stream, Isparta- Turkey

Diatoms are an important group of aquatic ecosystems and diatom-based indices are increasingly becoming important tools for the assessment of ecological conditions in lotic systems. Although the studies are very limited about Turkish rivers, diatom indices were used for monitoring rivers in different basins. In the present study, we used OMNIDIA program for estimation of stream quality. Some indices have less sensitive (IDP, WAT, LOBO, GENRE, TID, CEE, PT), intermediate sensitivities (IDSE, DESCY, IPS, DI-CH, SLA, IDAP), the others higher sensitivities (SID, IBD, SHE, EPI-D). Among the investigated diatom communities, only a few taxa indicated alfa-mesosaprobity and polysaprobity. Most of the sites were characterized by a great relative contribution of eutraphent and tolerant ones as well as oligosaprobic and betamesosaprobic diatoms. In general, SID and IBD indices gave the best results. This study suggests that the structure of benthic diatom communities and diatom indices, especially SID, can be applied for monitoring rivers in Southern Turkey. 

Application of Computational Intelligence for Sensor Fault Detection and Isolation

The new idea of this research is application of a new fault detection and isolation (FDI) technique for supervision of sensor networks in transportation system. In measurement systems, it is necessary to detect all types of faults and failures, based on predefined algorithm. Last improvements in artificial neural network studies (ANN) led to using them for some FDI purposes. In this paper, application of new probabilistic neural network features for data approximation and data classification are considered for plausibility check in temperature measurement. For this purpose, two-phase FDI mechanism was considered for residual generation and evaluation.

Study of EEGs from Somatosensory Cortex and Alzheimer's Disease Sources

This study is to investigate the electroencephalogram (EEG) differences generated from a normal and Alzheimer-s disease (AD) sources. We also investigate the effects of brain tissue distortions due to AD on EEG. We develop a realistic head model from T1 weighted magnetic resonance imaging (MRI) using finite element method (FEM) for normal source (somatosensory cortex (SC) in parietal lobe) and AD sources (right amygdala (RA) and left amygdala (LA) in medial temporal lobe). Then, we compare the AD sourced EEGs to the SC sourced EEG for studying the nature of potential changes due to sources and 5% to 20% brain tissue distortions. We find an average of 0.15 magnification errors produced by AD sourced EEGs. Different brain tissue distortion models also generate the maximum 0.07 magnification. EEGs obtained from AD sources and different brain tissue distortion levels vary scalp potentials from normal source, and the electrodes residing in parietal and temporal lobes are more sensitive than other electrodes for AD sourced EEG.

Dynamics of a Vapour Bubble inside a Vertical Rigid Cylinder in the Absence of Buoyancy Forces

In this paper, growth and collapse of a vapour bubble generated due to a local energy input inside a rigid cylinder and in the absence of buoyancy forces is investigated using Boundary Integral Equation Method and Finite Difference Method .The fluid is treated as potential flow and Boundary Integral Equation Method is used to solve Laplace-s equation for velocity potential. Different ratios of the diameter of the rigid cylinder to the maximum radius of the bubble are considered. Results show that during the collapse phase of the bubble inside a vertical rigid cylinder, two liquid micro jets are developed on the top and bottom sides of the vapour bubble and are directed inward. It is found that by increasing the ratio of the cylinder diameter to the maximum radius of the bubble, the rate of the growth and collapse phases of the bubble increases and the life time of the bubble decreases.

Large Vibration Amplitudes of Circular Functionally Graded Thin Plates Resting on Winkler Elastic Foundations

This paper describes a study of geometrically nonlinear free vibration of thin circular functionally graded (CFGP) plates resting on Winkler elastic foundations. The material properties of the functionally graded composites examined here are assumed to be graded smoothly and continuously through the direction of the plate thickness according to a power law and are estimated using the rule of mixture. The theoretical model is based on the classical Plate theory and the Von-Kármán geometrical nonlinearity assumptions. An homogenization procedure (HP) is developed to reduce the problem considered here to that of isotropic homogeneous circular plates resting on Winkler foundation. Hamilton-s principle is applied and a multimode approach is derived to calculate the fundamental nonlinear frequency parameters which are found to be in a good agreement with the published results. On the other hand, the influence of the foundation parameters on the nonlinear fundamental frequency has also been analysed.

Automatically Generated and Marked E-Learning Exercises for Logistics Cost Accounting

This paper presents the concept and realisation of an e-learning tool that provides predefined or automatically generated exercises concerning logistics cost accounting. Students may practise where and whenever they like to via the Internet. Their solutions are marked automatically by the tool while considering consecutive faults and without any intervention of lecturers.

Detection of Action Potentials in the Presence of Noise Using Phase-Space Techniques

Emerging Bio-engineering fields such as Brain Computer Interfaces, neuroprothesis devices and modeling and simulation of neural networks have led to increased research activity in algorithms for the detection, isolation and classification of Action Potentials (AP) from noisy data trains. Current techniques in the field of 'unsupervised no-prior knowledge' biosignal processing include energy operators, wavelet detection and adaptive thresholding. These tend to bias towards larger AP waveforms, AP may be missed due to deviations in spike shape and frequency and correlated noise spectrums can cause false detection. Also, such algorithms tend to suffer from large computational expense. A new signal detection technique based upon the ideas of phasespace diagrams and trajectories is proposed based upon the use of a delayed copy of the AP to highlight discontinuities relative to background noise. This idea has been used to create algorithms that are computationally inexpensive and address the above problems. Distinct AP have been picked out and manually classified from real physiological data recorded from a cockroach. To facilitate testing of the new technique, an Auto Regressive Moving Average (ARMA) noise model has been constructed bases upon background noise of the recordings. Along with the AP classification means this model enables generation of realistic neuronal data sets at arbitrary signal to noise ratio (SNR).

Application of Computational Intelligence Techniques for Economic Load Dispatch

This paper presents the applications of computational intelligence techniques to economic load dispatch problems. The fuel cost equation of a thermal plant is generally expressed as continuous quadratic equation. In real situations the fuel cost equations can be discontinuous. In view of the above, both continuous and discontinuous fuel cost equations are considered in the present paper. First, genetic algorithm optimization technique is applied to a 6- generator 26-bus test system having continuous fuel cost equations. Results are compared to conventional quadratic programming method to show the superiority of the proposed computational intelligence technique. Further, a 10-generator system each with three fuel options distributed in three areas is considered and particle swarm optimization algorithm is employed to minimize the cost of generation. To show the superiority of the proposed approach, the results are compared with other published methods.

Generic Filtering of Infinite Sets of Stochastic Signals

A theory for optimal filtering of infinite sets of random signals is presented. There are several new distinctive features of the proposed approach. First, a single optimal filter for processing any signal from a given infinite signal set is provided. Second, the filter is presented in the special form of a sum with p terms where each term is represented as a combination of three operations. Each operation is a special stage of the filtering aimed at facilitating the associated numerical work. Third, an iterative scheme is implemented into the filter structure to provide an improvement in the filter performance at each step of the scheme. The final step of the scheme concerns signal compression and decompression. This step is based on the solution of a new rank-constrained matrix approximation problem. The solution to the matrix problem is described in this paper. A rigorous error analysis is given for the new filter.

Solving Bus Terminal Location Problem Using Genetic Algorithm

Bus networks design is an important problem in public transportation. The main step to this design, is determining the number of required terminals and their locations. This is an especial type of facility location problem, a large scale combinatorial optimization problem that requires a long time to be solved. The genetic algorithm (GA) is a search and optimization technique which works based on evolutionary principle of natural chromosomes. Specifically, the evolution of chromosomes due to the action of crossover, mutation and natural selection of chromosomes based on Darwin's survival-of-the-fittest principle, are all artificially simulated to constitute a robust search and optimization procedure. In this paper, we first state the problem as a mixed integer programming (MIP) problem. Then we design a new crossover and mutation for bus terminal location problem (BTLP). We tested the different parameters of genetic algorithm (for a sample problem) and obtained the optimal parameters for solving BTLP with numerical try and error.

Implementation of Sprite Animation for Multimedia Application

Animation is simply defined as the sequencing of a series of static images to generate the illusion of movement. Most people believe that actual drawings or creation of the individual images is the animation, when in actuality it is the arrangement of those static images that conveys the motion. To become an animator, it is often assumed that needed the ability to quickly design masterpiece after masterpiece. Although some semblance of artistic skill is a necessity for the job, the real key to becoming a great animator is in the comprehension of timing. This paper will use a combination of sprite animation, frame animation, and some other techniques to cause a group of multi-colored static images to slither around in the bounded area. In addition to slithering, the images will also change the color of different parts of their body, much like the real world creatures that have this amazing ability to change the colors on their bodies do. This paper was implemented by using Java 2 Standard Edition (J2SE). It is both time-consuming and expensive to create animations, regardless if they are created by hand or by using motion-capture equipment. If the animators could reuse old animations and even blend different animations together, a lot of work would be saved in the process. The main objective of this paper is to examine a method for blending several animations together in real time. This paper presents and analyses a solution using Weighted Skeleton Animation (WSA) resulting in limited CPU time and memory waste as well as saving time for the animators. The idea presented is described in detail and implemented. In this paper, text animation, vertex animation, sprite part animation and whole sprite animation were tested. In this research paper, the resolution, smoothness and movement of animated images will be carried out from the parameters, which will be obtained from the experimental research of implementing this paper.

The Performance of Genetic Algorithm for Synchronized Chaotic Chen System in CDMA Satellite Channel

Synchronization is a difficult problem in CDMA satellite communications. Due to the influence of additive noise and fading in the mobile channel, it is not easy to keep up with the attenuation and offset. This paper considers a recently proposed approach to solve the problem of synchronization chaotic Chen system in CDMA satellite communication in the presence of constant attenuation and offset. An analytic algorithm that provides closed form channel and carrier offset estimates is presented. The principle of this approach is based on adding a compensation block before the receiver to compensate the distortion of the imperfect channel by using genetic algorithm. The resultants presented, show that the receiver is able to recover rapidly the synchronization with the transmitter.

The Modeling of Viscous Microenvironment for the Coupled Enzyme System of Bioluminescence Bacteria

Effect of viscosity of media on kinetic parameters of the coupled enzyme system NADH:FMN-oxidoreductase–luciferase was investigated with addition of organic solvents (glycerol and sucrose), because bioluminescent enzyme systems based on bacterial luciferases offer a unique and general tool for analysis of the many analytes and enzymes in the environment, research and clinical laboratories and other fields. The possibility of stabilization and increase of activity of the coupled enzyme system NADH:FMN-oxidoreductase–luciferase activity in vicious aqueous-organic mixtures have been shown.

Generalized Morphological 3D Shape Decomposition Grayscale Interframe Interpolation Method

One of the main image representations in Mathematical Morphology is the 3D Shape Decomposition Representation, useful for Image Compression and Representation,and Pattern Recognition. The 3D Morphological Shape Decomposition representation can be generalized a number of times,to extend the scope of its algebraic characteristics as much as possible. With these generalizations, the Morphological Shape Decomposition 's role to serve as an efficient image decomposition tool is extended to grayscale images.This work follows the above line, and further develops it. Anew evolutionary branch is added to the 3D Morphological Shape Decomposition's development, by the introduction of a 3D Multi Structuring Element Morphological Shape Decomposition, which permits 3D Morphological Shape Decomposition of 3D binary images (grayscale images) into "multiparameter" families of elements. At the beginning, 3D Morphological Shape Decomposition representations are based only on "1 parameter" families of elements for image decomposition.This paper addresses the gray scale inter frame interpolation by means of mathematical morphology. The new interframe interpolation method is based on generalized morphological 3D Shape Decomposition. This article will present the theoretical background of the morphological interframe interpolation, deduce the new representation and show some application examples.Computer simulations could illustrate results.

Image Mapping with Cumulative Distribution Function for Quick Convergence of Counter Propagation Neural Networks in Image Compression

In general the images used for compression are of different types like dark image, high intensity image etc. When these images are compressed using Counter Propagation Neural Network, it takes longer time to converge. The reason for this is that the given image may contain a number of distinct gray levels with narrow difference with their neighborhood pixels. If the gray levels of the pixels in an image and their neighbors are mapped in such a way that the difference in the gray levels of the neighbor with the pixel is minimum, then compression ratio as well as the convergence of the network can be improved. To achieve this, a Cumulative Distribution Function is estimated for the image and it is used to map the image pixels. When the mapped image pixels are used the Counter Propagation Neural Network yield high compression ratio as well as it converges quickly.

A Real-Time Tracking System Developed for an Interactive Stage Performance

A real-time tracking system was built to track performers on an interactive stage. Using an ordinary, up to date, desktop workstation, the performers- silhouette was segmented from the background and parameterized by calculating the normalized central image moments. In the stage system, the silhouette moments were then sent to a parallel workstation, which used them to generate corresponding 3D virtual geometry and projected the generated graphic back onto the stage.

Recognition Machine (RM) for On-line and Isolated Flight Deck Officer (FDO) Gestures

The paper presents an on-line recognition machine (RM) for continuous/isolated, dynamic and static gestures that arise in Flight Deck Officer (FDO) training. RM is based on generic pattern recognition framework. Gestures are represented as templates using summary statistics. The proposed recognition algorithm exploits temporal and spatial characteristics of gestures via dynamic programming and Markovian process. The algorithm predicts corresponding index of incremental input data in the templates in an on-line mode. Accumulated consistency in the sequence of prediction provides a similarity measurement (Score) between input data and the templates. The algorithm provides an intuitive mechanism for automatic detection of start/end frames of continuous gestures. In the present paper, we consider isolated gestures. The performance of RM is evaluated using four datasets - artificial (W TTest), hand motion (Yang) and FDO (tracker, vision-based ). RM achieves comparable results which are in agreement with other on-line and off-line algorithms such as hidden Markov model (HMM) and dynamic time warping (DTW). The proposed algorithm has the additional advantage of providing timely feedback for training purposes.

Skin Detection using Histogram depend on the Mean Shift Algorithm

In this paper, we were introduces a skin detection method using a histogram approximation based on the mean shift algorithm. The proposed method applies the mean shift procedure to a histogram of a skin map of the input image, generated by comparison with standard skin colors in the CbCr color space, and divides the background from the skin region by selecting the maximum value according to brightness level. The proposed method detects the skin region using the mean shift procedure to determine a maximum value that becomes the dividing point, rather than using a manually selected threshold value, as in existing techniques. Even when skin color is contaminated by illumination, the procedure can accurately segment the skin region and the background region. The proposed method may be useful in detecting facial regions as a pretreatment for face recognition in various types of illumination.