Numerical Modeling of Temperature Fields in Aviation Gas Turbine Elements

A mathematical model and a numerical method for computing the temperature field of the profile part of convectionally cooled blades are developed. The theoretical substantiation of the method is proved by corresponding theorems. To this end, convergent quadrature processes were developed and error estimates were obtained in terms of the Zygmund continuity moduli. The boundary conditions for heat exchange are determined from the solution of the corresponding integral equations and empirical relations. The reliability of the developed methods is confirmed by calculation and experimental studies of the thermohydraulic characteristics of the nozzle apparatus of the first stage of the gas turbine.

Integral Methods in the Determination of Temperature Fields of Cooled Blades of Gas Turbines

A mathematical model and an effective numerical method for calculating the temperature field of the profile part of convection cooled blades have been developed. The theoretical substantiation of the method is proved by corresponding theorems. To this end, convergent quadrature processes were developed and error estimates were obtained in terms of the Zygmund continuity moduli.The boundary conditions for heat exchange are determined from the solution of the corresponding integral equations and empirical relations.The reliability of the developed methods is confirmed by the calculation-experimental studies of the thermohydraulic characteristics of the nozzle apparatus of the first stage of a gas turbine.

Analysis on the Feasibility of Landsat 8 Imagery for Water Quality Parameters Assessment in an Oligotrophic Mediterranean Lake

Lake water quality monitoring in combination with the use of earth observation products constitutes a major component in many water quality monitoring programs. Landsat 8 images of Trichonis Lake (Greece) acquired on 30/10/2013 and 30/08/2014 were used in order to explore the possibility of Landsat 8 to estimate water quality parameters and particularly CDOM absorption at specific wavelengths, chlorophyll-a and nutrient concentrations in this oligotrophic freshwater body, characterized by inexistent quantitative, temporal and spatial variability. Water samples have been collected at 22 different stations, on late August of 2014 and the satellite image of the same date was used to statistically correlate the in-situ measurements with various combinations of Landsat 8 bands in order to develop algorithms that best describe those relationships and calculate accurately the aforementioned water quality components. Optimal models were applied to the image of late October of 2013 and the validation of the results was conducted through their comparison with the respective available in-situ data of 2013. Initial results indicated the limited ability of the Landsat 8 sensor to accurately estimate water quality components in an oligotrophic waterbody. As resulted by the validation process, ammonium concentrations were proved to be the most accurately estimated component (R = 0.7), followed by chl-a concentration (R = 0.5) and the CDOM absorption at 420 nm (R = 0.3). In-situ nitrate, nitrite, phosphate and total nitrogen concentrations of 2014 were measured as lower than the detection limit of the instrument used, hence no statistical elaboration was conducted. On the other hand, multiple linear regression among reflectance measures and total phosphorus concentrations resulted in low and statistical insignificant correlations. Our results were concurrent with other studies in international literature, indicating that estimations for eutrophic and mesotrophic lakes are more accurate than oligotrophic, owing to the lack of suspended particles that are detectable by satellite sensors. Nevertheless, although those predictive models, developed and applied to Trichonis oligotrophic lake are less accurate, may still be useful indicators of its water quality deterioration.

Noise Reduction in Web Data: A Learning Approach Based on Dynamic User Interests

One of the significant issues facing web users is the amount of noise in web data which hinders the process of finding useful information in relation to their dynamic interests. Current research works consider noise as any data that does not form part of the main web page and propose noise web data reduction tools which mainly focus on eliminating noise in relation to the content and layout of web data. This paper argues that not all data that form part of the main web page is of a user interest and not all noise data is actually noise to a given user. Therefore, learning of noise web data allocated to the user requests ensures not only reduction of noisiness level in a web user profile, but also a decrease in the loss of useful information hence improves the quality of a web user profile. Noise Web Data Learning (NWDL) tool/algorithm capable of learning noise web data in web user profile is proposed. The proposed work considers elimination of noise data in relation to dynamic user interest. In order to validate the performance of the proposed work, an experimental design setup is presented. The results obtained are compared with the current algorithms applied in noise web data reduction process. The experimental results show that the proposed work considers the dynamic change of user interest prior to elimination of noise data. The proposed work contributes towards improving the quality of a web user profile by reducing the amount of useful information eliminated as noise.

Maize Tolerance to Natural and Artificial Infestation with Diabrotica virgifera virgifera Eggs

Western corn rootworm – WCR (Diabrotica virgifera sp.virgifera, Coleoptera, Chrysomelidae) is economically the most important pest of maize worldwide. WCR natural population is already very abundant on Serbian fields, and keeps increasing each year. Tolerance is recognized by larger root size and bigger root regrowth. Severe larval injuries cause lack of compensatory regrowth and lead to reduction of plant growth and yield. The aim of this research was to evaluate tolerance of commercial Serbian maize hybrid NS 640, under natural WCR infestation and under conditions of artificial infestation, and to obtain the information about its tolerance to WCR larval feeding in two consecutive years. Field experiments were conducted in 2015 and 2016, in Bečej (Vojvodina province, Serbia). In experimental field, 96 plants were selected, marked and arranged in 48 pairs. Each pair represented two plants. The first plant was artificially infested with 4 mL WCR egg suspension in agar (550 eggs plant-1) in the root zone (D plant). The second plant represented control plant (C plant) with injection of 4 mL distilled water in root zone. The experimental field was inspected weekly. A hybrid tolerance was assessed based on root injury level and root mass. Root injury was rated using the Node-Injury Scale 1-6, during the last field inspection (September – October). Comparing the root injuries on D and C plants in 2015, more severe damages were recorded on D plants (12 plants - rate 5 and 17 plants - rate 6) compared to C plants (2 plants - rate 5 and 8 plants - rate 6). Also, the highest number of plants with healthy roots (rate 1), was registered in the control (25 plants), while only 4 D plants were rated as injury level 1. In 2016, root injuries caused by WCR larvae on D and C plants did not differ significantly. The reason is the difference in climatic conditions between the years. The 2015 was extremely dry and more suitable for WCR larval development and movement in the soil, compared to 2016. Thus, more severe damages appeared on artificially infested plants (D plants). Root mass was in strong correlation with the level of root injury, but did not differ significantly between D and C plants, in both years.

Hydrological Modeling of Watersheds Using the Only Corresponding Competitor Method: The Case of M’Zab Basin, South East Algeria

Water resources management includes several disciplines; the modeling of rainfall-runoff relationship is the most important discipline to prevent natural risks. There are several models to study rainfall-runoff relationship in watersheds. However, the majority of these models are not applicable in all basins of the world.  In this study, a new stochastic method called The Only Corresponding Competitor method (OCC) was used for the hydrological modeling of M’ZAB   Watershed (South East of Algeria) to adapt a few empirical models for any hydrological regime.  The results obtained allow to authorize a certain number of visions, in which it would be interesting to experiment with hydrological models that improve collectively or separately the data of a catchment by the OCC method.

The Impact of Leadership Style and Sense of Competence on the Performance of Post-Primary School Teachers in Oyo State, Nigeria

The not so pleasing state of the nation's quality of education has been a major area of research. Many researchers have looked into various aspects of the educational system and organizational structure in relation to the quality of service delivery of the staff members. However, there is paucity of research in areas relating to the sense of competence and commitment in relation to leadership styles. Against this backdrop, this study investigated the impact of leadership style and sense of competence on the performance of post-primary school teachers in Oyo state Nigeria. Data were generated across public secondary schools in the city using survey design method. Ibadan as a metropolis has eleven local government areas contained in it. A systematic random sampling technique of the eleven local government areas in Ibadan was done and five local government areas were selected. The selected local government areas are Akinyele, Ibadan North, Ibadan North-East, Ibadan South and Ibadan South-West. Data were obtained from a range of two – three public secondary schools selected in each of the local government areas mentioned above. Also, these secondary schools are a representation of the variations in the constructs under consideration across the Ibadan metropolis. Categorically, all secondary school teachers in Ibadan were clustered into selected schools in those found across the five local government areas. In all, a total of 272 questionnaires were administered to public secondary school teachers, while 241 were returned. Findings revealed that transformational leadership style makes room for job commitment when compared with transactional and laissez-faire leadership styles. Teachers with a high sense of competence are more likely to demonstrate more commitment to their job than others with low sense of competence. We recommend that, it is important an assessment is made of the leadership styles employed by principals and school administrators. This guides administrators and principals in to having a clear, comprehensive knowledge of the style they currently adopt in the management of the staff and the school as a whole; and know where to begin the adjustment process from. Also to make an impact on student achievement, being attentive to teachers’ levels of commitment may be an important aspect of leadership for school principals.

Biological Hotspots in the Galápagos Islands: Exploring Seasonal Trends of Ocean Climate Drivers to Monitor Algal Blooms

The Galápagos Marine Reserve (GMR) is an internationally-recognized region of consistent upwelling events, high productivity, and rich biodiversity. Despite its high-nutrient, low-chlorophyll condition, the archipelago has experienced phytoplankton blooms, especially in the western section between Isabela and Fernandina Islands. However, little is known about how climate variability will affect future phytoplankton standing stock in the Galápagos, and no consistent protocols currently exist to quantify phytoplankton biomass, identify species, or monitor for potential harmful algal blooms (HABs) within the archipelago. This analysis investigates physical, chemical, and biological oceanic variables that contribute to algal blooms within the GMR, using 4 km Aqua MODIS satellite imagery and 0.125-degree wind stress data from January 2003 to December 2016. Furthermore, this study analyzes chlorophyll-a concentrations at varying spatial scales— within the greater archipelago, as well as within five smaller bioregions based on species biodiversity in the GMR. Seasonal and interannual trend analyses, correlations, and hotspot identification were performed. Results demonstrate that chlorophyll-a is expressed in two seasons throughout the year in the GMR, most frequently in September and March, with a notable hotspot in the Elizabeth Bay bioregion. Interannual chlorophyll-a trend analyses revealed highest peaks in 2003, 2007, 2013, and 2016, and variables that correlate highly with chlorophyll-a include surface temperature and particulate organic carbon. This study recommends future in situ sampling locations for phytoplankton monitoring, including the Elizabeth Bay bioregion. Conclusions from this study contribute to the knowledge of oceanic drivers that catalyze primary productivity and consequently affect species biodiversity within the GMR. Additionally, this research can inform policy and decision-making strategies for species conservation and management within bioregions of the Galápagos.

Optimization the Conditions of Electrophoretic Deposition Fabrication of Graphene-Based Electrode to Consider Applications in Electro-Optical Sensors

Graphene has gained much attention owing to its unique optical and electrical properties. Charge carriers in graphene sheets (GS) carry out a linear dispersion relation near the Fermi energy and behave as massless Dirac fermions resulting in unusual attributes such as the quantum Hall effect and ambipolar electric field effect. It also exhibits nondispersive transport characteristics with an extremely high electron mobility (15000 cm2/(Vs)) at room temperature. Recently, several progresses have been achieved in the fabrication of single- or multilayer GS for functional device applications in the fields of optoelectronic such as field-effect transistors ultrasensitive sensors and organic photovoltaic cells. In addition to device applications, graphene also can serve as reinforcement to enhance mechanical, thermal, or electrical properties of composite materials. Electrophoretic deposition (EPD) is an attractive method for development of various coatings and films. It readily applied to any powdered solid that forms a stable suspension. The deposition parameters were controlled in various thicknesses. In this study, the graphene electrodeposition conditions were optimized. The results were obtained from SEM, Ohm resistance measuring technique and AFM characteristic tests. The minimum sheet resistance of electrodeposited reduced graphene oxide layers is achieved at conditions of 2 V in 10 s and it is annealed at 200 °C for 1 minute.

Variability in Near-Surface Ultraviolet Radiation and Its Dependence on Atmospheric Parameters

Natural radiations such as ultraviolet (UV) radiation sourced from sun are known to be the main causes of skin cancer, sunburn, eye damage, premature aging of skin and other skin related diseases. Its percentage of radiation reaching the earth populace and its impacts are not well known. Its variability in near-surface relating to its impacts on populace depends on some atmospheric parameters. Hence, this work was embarked on to determine the variability in near-surface UV radiation and its dependency on some atmospheric parameters at different time of the day in Offa, Nigeria. The variability was determined using the data obtained from meteorological garden, Science Laboratory Technology Department, Federal Polytechnic Offa, Nigeria. The data obtained were solar UV radiation, solar radiation, temperature, humidity and pressure at 30 minutes interval. Relationships were determined and correlations were derived using SPSS Pearson Correlation tool. The results showed a significant level of correlation with p-value of 0.01 and 0.05 levels. Thus, the results revealed some good relationships between the solar UV radiation and other atmospheric parameters with significance level less than p-value obtained. Inferentially, interdependent relationships were found to exist. Therefore, the nature of relationship obtained could be a yardstick for decision making in short term environmental planning on solar UV radiation depending of some atmospheric parameters within Offa locality.

Modeling of Gas Turbine Cooled Blades

In contrast to existing methods which do not take into account multiconnectivity in a broad sense of this term, we develop mathematical models and highly effective combination (BIEM and FDM) numerical methods of calculation of stationary and quasi-stationary temperature field of a profile part of a blade with convective cooling (from the point of view of realization on PC). The theoretical substantiation of these methods is proved by appropriate theorems. For it, converging quadrature processes have been developed and the estimations of errors in the terms of A.Ziqmound continuity modules have been received. For visualization of profiles are used: the method of the least squares with automatic conjecture, device spline, smooth replenishment and neural nets. Boundary conditions of heat exchange are determined from the solution of the corresponding integral equations and empirical relationships. The reliability of designed methods is proved by calculation and experimental investigations heat and hydraulic characteristics of the gas turbine first stage nozzle blade.

The Connection of the Nibbāna with the Six Sense Bases

A being is the working of the six sense bases. The sense bases are the eye, the ear, the nose, the tongue, the body and the mind. Buddhism describes what these sense bases are and how they work. These sense bases can be related to many of the philosophical and psychological teachings of the Buddha. One of the most important teachings of the Buddha is the Four Noble Truths. Buddhism explains that one who needs to attain Nibbāna must understand and realize these Four Noble Truths. These noble truths have a direct connection with the sense bases. The ultimate goal of Buddhism is Nibbāna. But there is no place or a special world called the “Nibbāna”. This paper describes that the noble truths can be identified within one’s own sense bases. The noble truth of suffering occurs within the functioning of the sense bases and the cause of suffering, “craving” operates inside the senses bases and the cessation of suffering, or Nibbāna is also experienced in the Sense Bases. Relevant material will be drawn for this paper directly from the Pāli canonical sources. The major finding is that the first three noble truths can be experienced through the six sense bases. The conclusion derived from the study is that the sense bases have direct relevance to Nibbāna, which is not to be conceived as another place or another dimension, but phenomena that can be experienced through one’s own sense bases, and that the other noble truths are also to be experienced in relation to one’s own sense bases.

Horizontal and Vertical Illuminance Correlations in a Case Study for Shaded South Facing Surfaces

Daylight utilization is a key factor in achieving visual and thermal comfort, and energy savings in integrated building design. However, lack of measured data related to this topic has become a major challenge with the increasing need for integrating lighting concepts and simulations in the early stages of design procedures. The current paper deals with the values of daylight illuminance on horizontal and south facing vertical surfaces; the data are estimated using IESNA model and measured values of the horizontal and vertical illuminance, and a regression model with an acceptable linear correlation is obtained. The resultant illuminance frequency curves are useful for estimating daylight availability on south facing surfaces in Tehran. In addition, the relationship between indirect vertical illuminance and the corresponding global horizontal illuminance is analyzed. A simple parametric equation is proposed in order to predict the vertical illumination on a shaded south facing surface. The equation correlates the ratio between the vertical and horizontal illuminance to the solar altitude and is used with another relationship for prediction of the vertical illuminance. Both equations show good agreement, which allows for calculation of indirect vertical illuminance on a south facing surface at any time throughout the year.

Modeling Nanomechanical Behavior of ZnO Nanowires as a Function of Nano-Diameter

Elastic performances, as an essential property of nanowires (NWs), play a significant role in the design and fabrication of modern nanodevices. In this paper, our interest is focused on ZnO NWs to investigate wire diameter (Dwire ≤ 400 nm) effects on elastic properties. The plotted data reveal that a strong size dependence of the elastic constants exists when the wire diameter is smaller than ~ 100 nm. For larger diameters (Dwire > 100 nm), these ones approach their corresponding bulk values. To enrich this study, we make use of the scanning acoustic microscopy simulation technique. The calculation methodology consists of several steps: determination of longitudinal and transverse wave velocities, calculation of refection coefficients, calculation of acoustic signatures and Rayleigh velocity determination. Quantitatively, it was found that changes in ZnO diameters over the ranges 1 nm ≤ Dwire ≤ 100 nm lead to similar exponential variations, for all elastic parameters, of the from: A = a + b exp(-Dwire/c) where a, b, and c are characteristic constants of a given parameter. The developed relation can be used to predict elastic properties of such NW by just knowing its diameter and vice versa.

Identification of Microbial Community in an Anaerobic Reactor Treating Brewery Wastewater

The study of microbial ecology and their function in anaerobic digestion processes are essential to control the biological processes. This is to know the symbiotic relationship between the microorganisms that are involved in the conversion of complex organic matter in the industrial wastewater to simple molecules. In this study, diversity and quantity of bacterial community in the granular sludge taken from the different compartments of a full-scale upflow anaerobic sludge blanket (UASB) reactor treating brewery wastewater was investigated using polymerase chain reaction (PCR) and real-time quantitative PCR (qPCR). The phylogenetic analysis showed three major eubacteria phyla that belong to Proteobacteria, Firmicutes and Chloroflexi in the full-scale UASB reactor, with different groups populating different compartment. The result of qPCR assay showed high amount of eubacteria with increase in concentration along the reactor’s compartment. This study extends our understanding on the diverse, topological distribution and shifts in concentration of microbial communities in the different compartments of a full-scale UASB reactor treating brewery wastewater. The colonization and the trophic interactions among these microbial populations in reducing and transforming complex organic matter within the UASB reactors were established.

Method of Cluster Based Cross-Domain Knowledge Acquisition for Biologically Inspired Design

Biologically inspired design inspires inventions and new technologies in the field of engineering by mimicking functions, principles, and structures in the biological domain. To deal with the obstacles of cross-domain knowledge acquisition in the existing biologically inspired design process, functional semantic clustering based on functional feature semantic correlation and environmental constraint clustering composition based on environmental characteristic constraining adaptability are proposed. A knowledge cell clustering algorithm and the corresponding prototype system is developed. Finally, the effectiveness of the method is verified by the visual prosthetic device design.

An Improved Limited Tolerance Rough Set Model

Some extended rough set models in incomplete information system cannot distinguish the two objects that have few known attributes and more unknown attributes; some cannot make a flexible and accurate discrimination. In order to solve this problem, this paper suggests an improved limited tolerance rough set model using two thresholds to control what two objects have a relationship between them in limited tolerance relation and to classify objects. Our practical study case shows the model can get fine and reasonable decision results.

A Study on the Nostalgia Contents Analysis of Hometown Alumni in the Online Community

This study aims to analyze the text terms posted on an online community of people from the same hometown and to understand the topic and trend of nostalgia composed online. For this purpose, this study collected 144 writings which the natives of Yeongjong Island, Incheon, South-Korea have posted on an online community. And it analyzed association relations. As a result, online community texts means that just defining nostalgia as ‘a mind longing for hometown’ is not an enough explanation. Second, texts composed online have abstractness rather than persons’ individual stories. This study figured out the relationship that had the most critical and closest mutual association among the terms that constituted nostalgia through literature research and association rule concerning nostalgia. The result of this study has a characteristic that it summed up the core terms and emotions related to nostalgia.

Adaptive Filtering in Subbands for Supervised Source Separation

This paper investigates MIMO (Multiple-Input Multiple-Output) adaptive filtering techniques for the application of supervised source separation in the context of convolutive mixtures. From the observation that there is correlation among the signals of the different mixtures, an improvement in the NSAF (Normalized Subband Adaptive Filter) algorithm is proposed in order to accelerate its convergence rate. Simulation results with mixtures of speech signals in reverberant environments show the superior performance of the proposed algorithm with respect to the performances of the NLMS (Normalized Least-Mean-Square) and conventional NSAF, considering both the convergence speed and SIR (Signal-to-Interference Ratio) after convergence.

Computing the Similarity and the Diversity in the Species Based on Cronobacter Genome

The purpose of computing the similarity and the diversity in the species is to trace the process of evolution and to find the relationship between the species and discover the unique, the special, the common and the universal proteins. The proteins of the whole genome of 40 species are compared with the cronobacter genome which is used as reference genome. More than 3 billion pairwise alignments are performed using blastp. Several findings are introduced in this study, for example, we found 172 proteins in cronobacter genome which have insignificant hits in other species, 116 significant proteins in the all tested species with very high score value and 129 common proteins in the plants but have insignificant hits in mammals, birds, fishes, and insects.