Identification of Microbial Community in an Anaerobic Reactor Treating Brewery Wastewater

The study of microbial ecology and their function in anaerobic digestion processes are essential to control the biological processes. This is to know the symbiotic relationship between the microorganisms that are involved in the conversion of complex organic matter in the industrial wastewater to simple molecules. In this study, diversity and quantity of bacterial community in the granular sludge taken from the different compartments of a full-scale upflow anaerobic sludge blanket (UASB) reactor treating brewery wastewater was investigated using polymerase chain reaction (PCR) and real-time quantitative PCR (qPCR). The phylogenetic analysis showed three major eubacteria phyla that belong to Proteobacteria, Firmicutes and Chloroflexi in the full-scale UASB reactor, with different groups populating different compartment. The result of qPCR assay showed high amount of eubacteria with increase in concentration along the reactor’s compartment. This study extends our understanding on the diverse, topological distribution and shifts in concentration of microbial communities in the different compartments of a full-scale UASB reactor treating brewery wastewater. The colonization and the trophic interactions among these microbial populations in reducing and transforming complex organic matter within the UASB reactors were established.





References:
[1] Hulshoff, L., Lens, P., Castro, S., & Lettinga, G. (2004). Anaerobic Sludge Granulation. Water Research, 38, 1376-1389.
[2] Chulhwan, P., Chunyeon, L., Sangyong, K., Yu, C., & Howard, C. H. (2005). Upgrading of anaerobic digestion by incorporating two different hydrolysis processes. Journal of. Bioscience and Bioengineering, 100, 164–167.
[3] Mumme, J., Linke, B., & Tolle, R. (2010). Novel upflow anaerobic solid-state (UASS) reactor. Bioresource Technology, 101, 592–599.
[4] Batstone, D. J., Keller, J., & Blackall, L. L. (2004). The influence of substrate kinetics on the microbial community structure in granular anaerobic biomass. Water Research, 38, 1390-1404.
[5] Liu, W. T., Chan, O. C., & Fang, H. H. P. (2002). Microbial community dynamics during start-up of acidogenic reactors. Water Research, 36, 3203-3210.
[6] McHugh, S., O’Reilly, C., Mahony, T., Colleran, E., & O’Flaherty, V. (2003). Anaerobic granular sludge bioreactor technology. Reviews in Environmental Science and Biotechnology, 2, 225–245.
[7] Keyser, M., Witthuhn, R. C., Lamprecht, C., Coetzee, M. P. A., & Britz, T. J. (2006). PCR-based DGGE fingerprinting and identification of methanogens detected in three different types of UASB granules. Systematic and Applied Microbiology, 29(1), 77-84, doi:10.1016/j.syapm.2005.06.003.
[8] Zhang, L., Sun, Y., Guo, D., Wu, Z., & Jiang, D. (2012). Molecular diversity of bacterial community of dye wastewater in an anaerobic sequencing batch reactor. African Journal of Microbiology Research (35), 6444-6453.
[9] Enitan, A. M. (2014). Microbial community analysis of a UASB reactor and application of an evolutionary algorithm to enhance wastewater treatment and biogas production. PhD. Thesis, Durban University of Technology, South Africa.
[10] Giovannoni, S. J. (1991). The polymerase chain reaction. In: Stackebrandt E, Goodfellow M (eds) Nucleic acid techniques in bacterial systematics. John Wiley and Sons. Chischester.
[11] Luton, P. E., Wayne, J. M., Sharp, R. J., & Riley, P. W. (2002). The mcrA gene as an alternative to 16S rRNA in the phylogenetic analysis of methanogen populations in landfill. Microbiology, 148(11), 3521-3530.
[12] Ovreås, L., Forney, L., Daae, F. L., & Torsvik, V. (1997). Distribution of bacterioplankton in meromictic Lake Saelenvannet, as determined by denaturing gradient gel electrophoresis of PCR-amplified gene fragments coding for 16S rRNA. Applied and Environmental Microbiology, 63(9), 3367-3373.
[13] Amani, T., Nosrati, M., Mousavi, S. M., & Kermanshahi, R. K. (2011). Study of syntrophic anaerobic digestion of volatile fatty acids using enriched cultures at mesophilic conditions. International Journal of Environmental Science and Technology, 8(1), 83-96.
[14] Qiao, W., Peng, C., Wang, W., & Zhang, Z. (2011). Biogas production from supernatant of hydrothermally treated municipal sludge by upflow anaerobic sludge blanket reactor. Bioresource Technology, 102(21), 9904-9911, doi:10.1016/j.biortech.2011.08.037.
[15] Nelson, M. C., Morrison, M., & Yu, Z. (2011). A meta-analysis of the microbial diversity observed in anaerobic digesters. Bioresource Technology, 102(4), 3730-3739.
[16] Lee, S.-H., Kang, H.-J., Lee, Y. H., Lee, T. J., Han, K., Choi, Y., et al. (2012). Monitoring bacterial community structure and variability in time scale in full-scale anaerobic digesters. Journal of Environmental Monitoring, 14(7), 1893-1905.
[17] Jang, H. M., Kim, J. H., Ha, J. H., & Park, J. M. (2014). Bacterial and methanogenic archaeal communities during the single-stage anaerobic digestion of high-strength food wastewater. Bioresource Technology, 165, 174-182.
[18] Werner, J. J., Knights, D., Garcia, M. L., Scalfone, N. B., Smith, S., Yarasheski, K., et al. (2011). Bacterial community structures are unique and resilient in full-scale bioenergy systems. Proceedings of the National Academy of Sciences, 108(10), 4158-4163, doi:10.1073/pnas.1015676108.
[19] Krzysztof, Z., & Frac, M. (2012). Methane fermentation process as anaerobic digestion of biomass: Transformations, stages and microorganisms. African Journal of Biotechnology, 11, 4127.
[20] Kharayat, Y. (2012). Distillery wastewater: bioremediation approaches. Journal of Integrative Environmental Sciences, 9(2), 69-91.
[21] Chandrasekhar, K., Lee, Y.-J., & Lee, D.-W. (2015). Biohydrogen production: strategies to improve process efficiency through microbial routes. International Journal of Molecular Sciences, 16(4), 8266-8293.
[22] Kobayashi, T., Yasuda, D., Li, Y.-Y., Kubota, K., Harada, H., & Yu, H.-Q. (2009). Characterization of start-up performance and archaeal community shifts during anaerobic self-degradation of waste-activated sludge. Bioresource Technology, 100(21), 4981-4988, doi: http://dx.doi.org/10.1016/j.biortech.2009.05.043.
[23] Sundberg, C., Al-Soud, W. A., Larsson, M., Alm, E., Yekta, S. S., Svensson, B. H., et al. (2013). 454 pyrosequencing analyses of bacterial and archaeal richness in 21 full-scale biogas digesters. FEMS Microbiology Ecology, 85(3), 612-626.
[24] Qiu, Y.-L., Hanada, S., Ohashi, A., Harada, H., Kamagata, Y., & Sekiguchi, Y. (2008). Syntrophorhabdus aromaticivorans gen. nov., sp. nov., the first cultured anaerobe capable of degrading phenol to acetate in obligate syntrophic associations with a hydrogenotrophic methanogen. Applied and Environmental Microbiology, 74(7), 2051-2058.
[25] Enitan, A. M., Kumari, S., Swalaha, F. M., Adeyemo, J., Ramdhani, N., & Bux, F. (2014). Kinetic modelling and characterization of microbial community present in a full-scale UASB reactor treating brewery effluent. Microbial Ecology, 67(2), 358-368.
[26] Plugge, C. M., Zhang, W., Scholten, J. C., & Stams, A. J. (2011). Metabolic flexibility of sulfate-reducing bacteria. Frontiers in microbiology, 2.
[27] Ali Shah, F., Mahmood, Q., Maroof Shah, M., Pervez, A., & Ahmad Asad, S. (2014). Microbial ecology of anaerobic digesters: the key players of anaerobiosis. The Scientific World Journal, 2014. doi: http://dx.doi.org/10.1155/2014/183752.
[28] Pester, M., Knorr, K.-H., Friedrich, M. W., Wagner, M., & Loy, A. (2012). Sulfate-reducing microorganisms in wetlands–fameless actors in carbon cycling and climate change. Frontiers in Microbiology, 3.
[29] Yang, Y., Zhang, Y., Li, Z., Zhao, Z., Quan, X., & Zhao, Z. (2017). Adding granular activated carbon into anaerobic sludge digestion to promote methane production and sludge decomposition. Journal of Cleaner Production, 149, 1101-1108.
[30] Raskin, L., Rittmann, B. E., & Stahl, D. A. (1996). Competition and coexistence of sulfate-reducing and methanogenic populations in anaerobic biofilms. Applied and Environmental Microbiology, 62(10), 3847-3857.
[31] Dar, S. A., Kleerebezem, R., Stams, A. J., Kuenen, J. G., & Muyzer, G. (2008). Competition and coexistence of sulfate-reducing bacteria, acetogens and methanogens in a lab-scale anaerobic bioreactor as affected by changing substrate to sulfate ratio. Applied microbiology and biotechnology, 78(6), 1045-1055.
[32] Somoskovi, A., Parsons, L., & Salfinger, M. (2001). The molecular basis of resistance to isoniazid, rifampin and pyrazinamide in Mycobacterium tuberculosis. Respi Res, 2(3), 164 - 168.
[33] Wu, J.-H., Liu, W.-T., Tseng, I.-C., & Cheng, S.-S. (2001). Characterization of microbial consortia in a terephthalate-degrading anaerobic granular sludge system. Microbiology, 147(2), 373-382.