Wearable Sensing Application- Carbon Dioxide Monitoring for Emergency Personnel Using Wearable Sensors

The development of wearable sensing technologies is a great challenge which is being addressed by the Proetex FP6 project (www.proetex.org). Its main aim is the development of wearable sensors to improve the safety and efficiency of emergency personnel. This will be achieved by continuous, real-time monitoring of vital signs, posture, activity, and external hazards surrounding emergency workers. We report here the development of carbon dioxide (CO2) sensing boot by incorporating commercially available CO2 sensor with a wireless platform into the boot assembly. Carefully selected commercially available sensors have been tested. Some of the key characteristics of the selected sensors are high selectivity and sensitivity, robustness and the power demand. This paper discusses some of the results of CO2 sensor tests and sensor integration with wireless data transmission

Detection of Salmonella in Egg Shell and Egg Content from Different Housing Systems for Laying Hens

Polymerase chain reaction (PCR) assay and conventional microbiological methods were used to detect bacterial contamination of egg shells and egg content in different commercial housing systems, open house system and evaporative cooling system. A PCR assay was developed for direct detection using a set of primers specific for the invasion by A gene (invA) of Salmonella spp. PCR detected the presence of Salmonella in 2 samples of shell egg from the evaporative cooling system, while conventional cultural methods detected no Salmonella from the same samples.

The Effect of Seed Inoculation (Pseudomonas putida+Bacillus lentus) and Different Levels of Fertilizers on Yield and Yield Components of Wheat (Triticum aestivum L.) Cultivars

In order to study of The Effect of seed inoculation with Pseudomonas putida+Bacillus lentus on yield and yield components of wheat (Triticum aestivum L.) cultivars, an experiment was carried out as factorial based on Randomized Complete Block Design (RCBD) in Agricultural Research Station of Shahrood University of Technology. Results showed that inoculation with Pseudomonas putida+Bacillus lentus promoted seed germination. Also, inoculation with Pseudomonas putida+Bacillus lentus significantly affected grain yield, Number of spikes per m2, Number of grain per spike and 1000-seed weight and There was not statistically significant difference between Chamran and Pishtaz cultivars . Finally, the dosages of chemical fertilizers currently applied in commercial wheat field in Iran (Shahrood region) could be reduced through proper combination of Pseudomonas putida+Bacillus lentus inoculation plus fertilization.

Preparation and Evaluation of New Nanocatalysts for Selective Oxidation of H2S to Sulfur

Selective oxidation of H2S to elemental sulfur in a fixed bed reactor over newly synthesized alumina nanocatalysts was physio-chemically investigated and results compared with a commercial Claus catalyst. Amongst these new materials, Al2O3- supported sodium oxide prepared with wet chemical technique and Al2O3 nanocatalyst prepared with spray pyrolysis method were the most active catalysts for selective oxidation of H2S to elemental sulfur. Other prepared nanocatalysts were quickly deactivated, mainly due to the interaction with H2S and conversion into sulfides.

Lipase Catalyzed Synthesis of Aromatic Esters of Sugar Alcohols

Commercially available lipases (Candida antarctica lipase B, Novozyme 435, Thermomyces lanuginosus lipase, and Lipozyme TL IM), as well as sol-gel immobilized lipases, have been screened for their ability to acylate regioselectively xylitol, sorbitol, and mannitol with a phenolic ester in a binary mixture of t-butanol and dimethylsulfoxide. HPLC and MALDI-TOF MS analysis revealed the exclusive formation of monoesters for all studied sugar alcohols. The lipases immobilized by the sol-gel entrapment method proved to be efficient catalysts, leading to high conversions (up to 60%) in the investigated acylation reactions. From a sequence of silane precursors with different nonhydrolyzable groups in their structure, the presence of octyl and i-butyl group was most beneficial for the catalytic activity of sol-gel entrapped lipases in the studied process.

Ethanol Production from Sugarcane Bagasse by Means of Enzymes Produced by Solid State Fermentation Method

Nowadays there is a growing interest in biofuel production in most countries because of the increasing concerns about hydrocarbon fuel shortage and global climate changes, also for enhancing agricultural economy and producing local needs for transportation fuel. Ethanol can be produced from biomass by the hydrolysis and sugar fermentation processes. In this study ethanol was produced without using expensive commercial enzymes from sugarcane bagasse. Alkali pretreatment was used to prepare biomass before enzymatic hydrolysis. The comparison between NaOH, KOH and Ca(OH)2 shows NaOH is more effective on bagasse. The required enzymes for biomass hydrolysis were produced from sugarcane solid state fermentation via two fungi: Trichoderma longibrachiatum and Aspergillus niger. The results show that the produced enzyme solution via A. niger has functioned better than T. longibrachiatum. Ethanol was produced by simultaneous saccharification and fermentation (SSF) with crude enzyme solution from T. longibrachiatum and Saccharomyces cerevisiae yeast. To evaluate this procedure, SSF of pretreated bagasse was also done using Celluclast 1.5L by Novozymes. The yield of ethanol production by commercial enzyme and produced enzyme solution via T. longibrachiatum was 81% and 50% respectively.

Numerical Study on the Response of Reinforced Concrete Wall Resisting the Impact Loading

A numerical analysis of a reinforced concrete (RC) wall under missile impact loading is presented in this study. The model created by Technical Research Center of Finland was used. The commercial finite element code, LS-DYNA was used to analyze. The structural components of the reinforced concrete wall, missile and their contacts are fully modeled. The material nonlinearity with strain rate effects considering damage and failure is included in the analysis. The results of analysis were verified with other research results. The case-studies with different reinforcement ratios were conducted to investigate the influence of reinforcement on the punching behavior of walls under missile impact.

Impact of Faults in Different Software Systems: A Survey

Software maintenance is extremely important activity in software development life cycle. It involves a lot of human efforts, cost and time. Software maintenance may be further subdivided into different activities such as fault prediction, fault detection, fault prevention, fault correction etc. This topic has gained substantial attention due to sophisticated and complex applications, commercial hardware, clustered architecture and artificial intelligence. In this paper we surveyed the work done in the field of software maintenance. Software fault prediction has been studied in context of fault prone modules, self healing systems, developer information, maintenance models etc. Still a lot of things like modeling and weightage of impact of different kind of faults in the various types of software systems need to be explored in the field of fault severity.

Numerical Analysis of Flow through Abrasive Water Suspension Jet: The Effect of Garnet, Aluminum Oxide and Silicon Carbide Abrasive on Skin Friction Coefficient Due To Wall Shear and Jet Exit Kinetic Energy

It is well known that the abrasive particles in the abrasive water suspension has significant effect on the erosion characteristics of the inside surface of the nozzle. Abrasive particles moving with the flow cause severe skin friction effect, there by altering the nozzle diameter due to wear which in turn reflects on the life of the nozzle for effective machining. Various commercial abrasives are available for abrasive water jet machining. The erosion characteristic of each abrasive is different. In consideration of this aspect, in the present work, the effect of abrasive materials namely garnet, aluminum oxide and silicon carbide on skin friction coefficient due to wall shear stress and jet kinetic energy has been analyzed. It is found that the abrasive material of lower density produces a relatively higher skin friction effect and higher jet exit kinetic energy.

Trust and Security in Electronic Payments: What We Have and Need to Know?

The growth of open networks created the interest to commercialise it. The establishment of an electronic business mechanism must be accompanied by a digital-electronic payment system to transfer the value of transactions. Financial organizations are requested to offer a secure e-payment synthesis with equivalent levels of trust and security served in conventional paper-based payment transactions. The paper addresses the challenge of the first trade problem in e-commerce, provides a brief literature review on electronic payment and attempts to explain the underlying concept and method of trust in relevance to electronic payment.

High Performance Liquid Chromatographic Method for Determination of Colistin Sulfate and its Application in Medicated Premixand Animal Feed

The aim of the present study was to develop and validate an inexpensive and simple high performance liquid chromatographic (HPLC) method for the determination of colistin sulfate. Separation of colistin sulfate was achieved on a ZORBAX Eclipse XDB-C18 column using UV detection at λ=215 nm. The mobile phase was 30 mM sulfate buffer (pH 2.5):acetonitrile(76:24). An excellent linearity (r2=0.998) was found in the concentration range of 25 - 400 μg/mL. Intra- day and inter-day precisions of method (%RSD, n=3) were less than 7.9%.The developed and validated method was applied to determination of the content of colistin sulfate in medicated premix and animal feed sample.The recovery of colistin from animal feed was satisfactorily ranged from 90.92 to 93.77%. The results demonstrated that the HPLC method developed in this work is appropriate for direct determination of colistin sulfate in commercial medicated premixes and animal feed.

Evaluation on the Viability of Combined Heat and Power with Different Distributed Generation Technologies for Various Bindings in Japan

This paper has examined the energy consumption characteristics in six different buildings including apartments, offices, commercial buildings, hospitals, hotels and educational facilities. Then 5-hectare (50000m2) development site for respective building-s type has been assumed as case study to evaluate the introduction effect of Combined Heat and Power (CHP). All kinds of CHP systems with different distributed generation technologies including Gas Turbine (GT), Gas Engine (GE), Diesel Engine (DE), Solid Oxide Fuel Cell (SOFC) and Polymer Electrolyte Fuel Cell (PEFC), have been simulated by using HEATMAP, CHP system analysis software. And their primary energy utilization efficiency, energy saving ratio and CO2 reduction ratio have evaluated and compared respectively. The results can be summarized as follows: Various buildings have their special heat to power ratio characteristics. Matching the heat to power ratio demanded from an individual building with that supplied from a CHP system is very important. It is necessary to select a reasonable distributed generation technologies according to the load characteristics of various buildings. Distributed generation technologies with high energy generating efficiency and low heat to power ratio, like SOFC and PEFC is more reasonable selection for Building Combined Heat and Power (BCHP). CHP system is an attractive option for hotels, hospitals and apartments in Japan. The users can achieve high energy saving and environmental benefit by introducing a CHP systems. In others buildings, especially like commercial buildings and offices, the introduction of CHP system is unreasonable.

A Study on the Effect of Variation of the Cross-sectional Area of Spiral Volute Casing for Centrifugal Pump

The impeller and the casing are the key components of a centrifugal pump. Although there have been many studies on the impeller and the volute casing of centrifugal pump, further study of the volute casing to improve the performance of centrifugal pumps is needed. In this paper, the effect of cross-sectional area on the performance of volute casing was investigated using a commercial CFD code. The performance characteristics, not only at the off-design point but also for a full type model are required these days. So we conducted numerical analysis for all operating points by using complete geometry through transient analysis. Transient analysis on the complete geometry of a real product has the advantage of simulating realistic flow. The results of this study show the variation of a performance curve by modifying the above-mentioned design parameter.

Bioactive Component in Milk and Dairy Product

Recent research has shown that milk proteins can yield bioactive peptides with opioid, mineral binding, cytomodulatory, antihypertensive, immunostimulating, antimicrobial and antioxidative activity in the human body. Bioactive peptides are encrypted in milk proteins and are only released by enzymatic hydrolysis in vivo during gastrointestinal digestion, food processing or by microbial enzymes in fermented products. At present significant research is being undertaken on the health effects of bioactive peptides. A variety of naturally formed bioactive peptides have been found in fermented dairy products, such as yoghurt, sour milk and cheese. In particular, antihypertensive peptides have been identified in fermented milks, whey and ripened cheese. Some of these peptides have been commercialized in the form of fermented milks. Bioactive peptides have the potential to be used in the formulation of health-enhancing nutraceuticals, and as potent drugs with well defined pharmacological effects.

Synthetic Transmit Aperture Method in Medical Ultrasonic Imaging

The work describes the use of a synthetic transmit aperture (STA) with a single element transmitting and all elements receiving in medical ultrasound imaging. STA technique is a novel approach to today-s commercial systems, where an image is acquired sequentially one image line at a time that puts a strict limit on the frame rate and the amount of data needed for high image quality. The STA imaging allows to acquire data simultaneously from all directions over a number of emissions, and the full image can be reconstructed. In experiments a 32-element linear transducer array with 0.48 mm inter-element spacing was used. Single element transmission aperture was used to generate a spherical wave covering the full image region. The 2D ultrasound images of wire phantom are presented obtained using the STA and commercial ultrasound scanner Antares to demonstrate the benefits of the SA imaging.

Reactive Absorption of Hydrogen Sulfide in Aqueous Ferric Sulfate Solution

Many commercial processes are available for the removal of H2S from gaseous streams. The desulfurization of gas streams using aqueous ferric sulfate solution as washing liquor is studied. Apart from sulfur, only H2O is generated in the process, and consequently, no waste treatment facilities are required. A distinct advantage of the process is that the reaction of H2S with is so rapid and complete that there remains no danger of discharging toxic waste gas. In this study, the reactive absorption of hydrogen sulfide into aqueous ferric sulfate solution has been studied and design calculations for equipments have been done and effective operation parameters on this process considered. Results show that high temperature and low pressure are suitable for absorption reaction. Variation of hydrogen sulfide concentration and Fe3+ concentration with time in absorption reaction shown that the reaction of ferric sulfate and hydrogen sulfide is first order with respect to the both reactant. At low Fe2(SO4)3 concentration the absorption rate of H2S increase with increasing the Fe2(SO4)3 concentration. At higher concentration a decrease in the absorption rate was found. At higher concentration of Fe2(SO4)3, the ionic strength and viscosity of solution increase remarkably resulting in a decrease of solubility, diffusivity and hence absorption rate.

Soybean and Fermented Soybean Extract Antioxidant Activities

Today, people are more interested in the foods beneficial on their health. However, there are still lacks of accurate knowledge in the field of biological properties, functional properties, including the application of legume in foods. This study focused on antioxidant activity of soybean (SB) and fermented soybean (FSB) crude extracts evaluating to have more information in fortification SB and FSB crude extracts in food products and/or dietary supplement. SB and FSB crude extracts were prepared by infusion with water and ethanol. The antioxidant activity of crude extracts was studied with DPPH and ABTS assay including commercial standard. From both DPPH and ABTS assay, the antioxidant activity of SB and FSB water crude extract showed higher antioxidant activity than ethanol crude extract, and FSB crude extract showed higher antioxidant activity than SB crude extract. In DPPH assay, BHT and vitamin C showed IC50 values at 0.241, 0.039 mg/ml, in ABTS assay. In addition, Trolox showed IC50 at 0.058 mg/ml respectively. FSB water crude extract showed high antioxidant activity. Finally, the functional properties study of both water and ethanol crude extracts should be done for beneficial in application of these extracts in food products and dietary supplement in the near future.

Applications of Carbon Fibers Produced from Polyacrylonitrile Fibers

Carbon fibers have specific characteristics in comparison with industrial and structural materials used in different applications. Special properties of carbon fibers make them attractive for reinforcing and fabrication of composites. These fibers have been utilized for composites of metals, ceramics and plastics. However, it-s mainly used in different forms to reinforce lightweight polymer materials such as epoxy resin, polyesters or polyamides. The composites of carbon fiber are stronger than steel, stiffer than titanium, and lighter than aluminum and nowadays they are used in a variety of applications. This study explains applications of carbon fibers in different fields such as space, aviation, transportation, medical, construction, energy, sporting goods, electronics, and the other commercial/industrial applications. The last findings of composites with polymer, metal and ceramic matrices containing carbon fibers and their applications in the world investigated. Researches show that carbon fibers-reinforced composites due to unique properties (including high specific strength and specific modulus, low thermal expansion coefficient, high fatigue strength, and high thermal stability) can be replaced with common industrial and structural materials.

Characterization of Three Photodetector Types for Computed Tomography Dosimetry

In this study three commercial semiconductor devices were characterized in the laboratory for computed tomography dosimetry: one photodiode and two phototransistors. It was evaluated four responses to the irradiation: dose linearity, energy dependence, angular dependence and loss of sensitivity after X ray exposure. The results showed that the three devices have proportional response with the air kerma; the energy dependence displayed for each device suggests that some calibration factors would be applied for each one; the angular dependence showed a similar pattern among the three electronic components. In respect to the fourth parameter analyzed, one phototransistor has the highest sensitivity however it also showed the greatest loss of sensitivity with the accumulated dose. The photodiode was the device with the smaller sensitivity to radiation, on the other hand, the loss of sensitivity after irradiation is negligible. Since high accuracy is a desired feature for a dosimeter, the photodiode can be the most suitable of the three devices for dosimetry in tomography. The phototransistors can also be used for CT dosimetry, however it would be necessary a correction factor due to loss of sensitivity with accumulated dose.

Simulation of the Airflow Characteristic inside a Hard Disk Drive by Applying a Computational Fluid Dynamics Software

Now-a-days, numbers of simulation software are being used all over the world to solve Computational Fluid Dynamics (CFD) related problems. In this present study, a commercial CFD simulation software namely STAR-CCM+ is applied to analyze the airflow characteristics inside a 2.5" hard disk drive. Each step of the software is described adequately to obtain the output and the data are verified with the theories to justify the robustness of the simulation outcome. This study gives an insight about the accuracy level of the CFD simulation software to compute CFD related problems although it largely depends upon the computer speed. Also this study will open avenues for further research.