Lipase Catalyzed Synthesis of Aromatic Esters of Sugar Alcohols

Commercially available lipases (Candida antarctica lipase B, Novozyme 435, Thermomyces lanuginosus lipase, and Lipozyme TL IM), as well as sol-gel immobilized lipases, have been screened for their ability to acylate regioselectively xylitol, sorbitol, and mannitol with a phenolic ester in a binary mixture of t-butanol and dimethylsulfoxide. HPLC and MALDI-TOF MS analysis revealed the exclusive formation of monoesters for all studied sugar alcohols. The lipases immobilized by the sol-gel entrapment method proved to be efficient catalysts, leading to high conversions (up to 60%) in the investigated acylation reactions. From a sequence of silane precursors with different nonhydrolyzable groups in their structure, the presence of octyl and i-butyl group was most beneficial for the catalytic activity of sol-gel entrapped lipases in the studied process.





References:
[1] H. Stamatis, V. Sereti, and F. N. Kolisis, "Enzymatic synthesis of
hydrophilic and hydrophobic derivatives of natural phenolic acids in
organic media", Journal of Molecular Catalysis B: Enzymatic, vol. 11,
pp. 323-328, 2001.
[2] C. Vafiadi, E. Topakas, K. K. Y. Wong, I. D. Suckling, and P.
Christakopoulos, "Mapping the hydrolytic and synthetic selectivity of a
type C feruloyl esterase (StFaeC) from Sporotrichum thermophile using
alkyl ferulates", Tetrahedron: Asymmetry, vol. 16, pp. 373-379, 2005.
[3] I. S. Yoo, S. J. Park, and H. H. Yoon, " Enzymatic synthesis of sugar
fatty acid esters", J. Ind. Eng. Chem., vol. 13, no. 1, pp. 1-6, 2007.
[4] J. Piao, S. Adachi, "Stability of O/W emulsions prepared using various
monoacyl sugar alcohols as an emulsifier", Innovat. Food Sci. Emerg.
Technol., vol. 7, pp. 211-216, 2006.
[5] B. Guyot, B. Bosquette, M. Pina, and J. Graille, "Esterification of
phenolic acids from green coffee with an immobilized lipase from
Candida antarctica in solvent-free medium ", Biotechnol. Let., vol. 19,
no. 6, pp. 529-532, 1997.
[6] H. Stamatis, V. Sereti, and F. N. Kolisis, "Studies on the enzymatic
synthesis of lipophilic derivatives of natural antioxidants", JAOCS, vol.
76, no. 12, pp. 1505-1510, 1999.
[7] A. M. B. Rahman, N. B. Chaibakhsh, M. A. B. Salleh, and R. N. Z. R. A.
Rahman, " Application of artificial neural network for yield prediction
of lipase-catalyzed synthesis of dioctyl adipate ", Appl. Biochem.
Biotechnol., vol. 158, no. 3, pp. 722-735, 2009.
[8] F. Ganske, U. T. Bornscheuer, "Optimization of lipase-catalyzed glucose
fatty acid ester synthesis in a two-phase system containing ionic liquids
and t-BuOH ", J. Mol. Catal. B: Enzym., vol. 36, pp. 40-42, 2005.
[9] J. Piao, S. Adachi, "Enzymatic preparation of fatty acid esters of sugar
alcohols by condensation in acetone using a packed-bed reactor with
immobilized Candida antarctica lipase", Biocat. Biotrans., vol. 22, pp.
269-274, 2004.
[10] A. F. Artamanov, L. F. Burkovskaya, F. S. Nigmatullina, and B. Z.
Dzhiembaev, "Synthesis of monoesters of d-sorbitol and aromatic
acids", Chem. Nat. Comp., vol. 33, no. 5, pp. 571-573, 1998.
[11] F. Peter L. Poppe, C. Kiss, E. Szocs-Bíro, G. Preda, C. Zarcula, and A.
Olteanu, "Influence of precursors and additives on microbial lipases
stabilized by sol-gel entrapment", Biocat. Biotrans., vol. 23, pp. 251-
260, 2005.
[12] M. M. Bradford, "A rapid and sensitive method for the quantitation of
microgram quantities of protein utilizing the principle of protein-dye
binding", Anal Biochem., vol. 72, pp. 248-254, 1976.
[13] R. ter Haar, H. A. Schols, L. A. M. van den Broek, D. Sa─ƒlam, A. E.
Frissen, C. G. Boeriu, and H. Gruppen, "Molecular sieves provoke
multiple substitutions in the enzymatic synthesis of fructose
oligosaccharide-lauryl esters", J. Mol. Catal. B: Enzymatic, vol. 62, pp.
183-189, 2010.
[14] C. Zarcula, C. Kiss, L. Corîci, R. Croitoru, C. Csunderlik, and F. Peter,
"Combined sol-gel entrapment and adsorption method to obtain solidphase
lipase biocatalyts", Rev. Chim.(Bucharest), vol. 60, no. 9, pp. 922-
927, 2009.
[15] C. Zarcula, R. Croitoru, L. Corîci, C. Csunderlik, and F. Peter,
"Improvement of lipase catalytic properties by immobilization in hybrid
matrices", Int. J. Chem. Biomol. Eng., vol. 2, no. 3, pp. 138-143, 2009.
[16] S. Naik, A. Basu, R. Saikia, Bhawna Madan, Pritish Paul, Robin
Chaterjee, Jesper Brask, and Allan Svendsen, "Lipases for use in
industrial biocatalysis: Specificity of selected structural groups of
lipases", J. Mol. Catal. B: Enzymatic, vol. 65, pp. 18-23, 2010.
[17] F. Peter, C. Zarcula, S. Kakasi-Zsurka, R. Croitoru, C. Davidescu, and C.
Csunderlik, "Solid-phase lipase biocatalysts for kinetic resolutions", J.
Biotechnol., 136S, S356-S401, 2008.
[18] R. T. Otto, H. Scheib, U. T. Bornscheuer, J. Pleiss, C. Syldatk, and R.
D. Schmid, "Substrate specificity of lipase B from Candida antarctica in
the synthesis of arylaliphatic glycolipids", J. Mol. Catalysis B:
Enzymatic, vol. 8, pp. 201-211, 2000.