Comparative Study of Decision Trees and Rough Sets Theory as Knowledge ExtractionTools for Design and Control of Industrial Processes

General requirements for knowledge representation in the form of logic rules, applicable to design and control of industrial processes, are formulated. Characteristic behavior of decision trees (DTs) and rough sets theory (RST) in rules extraction from recorded data is discussed and illustrated with simple examples. The significance of the models- drawbacks was evaluated, using simulated and industrial data sets. It is concluded that performance of DTs may be considerably poorer in several important aspects, compared to RST, particularly when not only a characterization of a problem is required, but also detailed and precise rules are needed, according to actual, specific problems to be solved.

A Framework of the Factors Affecting the Adoption of ICT for Physical Education

Physical education (PE) is still neglected in schools despite its academic, social, psychological, and health benefits. Based on the assumption that Information and Communication Technologies (ICTs) can contribute to the development of PE in schools, this study aims to design a model of the factors affecting the adoption of ICTs for PE in schools. The proposed model is based on a sound theoretical framework. It was designed following a literature review of technology adoption theories and of ICT adoption factors for physical education. The technology adoption model that fitted to the best all ICT adoption factors was then chosen as the basis for the proposed model. It was found that the Unified Theory of Acceptance and Use of Technology (UTAUT) is the most adequate theoretical framework for the modeling of ICT adoption factors for physical education.

An Experimental Method for Measuring Clamping Force in Bolted Connections and Effect of Bolt Threads Lubrication on Its Value

In this paper, the details of an experimental method to measure the clamping force value at bolted connections due to application of wrenching torque to tighten the nut have been presented. A simplified bolted joint including a holed plate with a single bolt was considered to carry out the experiments. This method was designed based on Hooke-s law by measuring compressive axial strain of a steel bush placed between the nut and the plate. In the experimental procedure, the values of clamping force were calculated for seven different levels of applied torque, and this process was repeated three times for each level of the torque. Moreover, the effect of lubrication of threads on the clamping value was studied using the same method. In both conditions (dry and lubricated threads), relation between the torque and the clamping force have been displayed in graphs.

Automatic Choice of Topics for Seminars by Clustering Students According to Their Profile

The new framework the Higher Education is immersed in involves a complete change in the way lecturers must teach and students must learn. Whereas the lecturer was the main character in traditional education, the essential goal now is to increase the students' participation in the process. Thus, one of the main tasks of lecturers in this new context is to design activities of different nature in order to encourage such participation. Seminars are one of the activities included in this environment. They are active sessions that enable going in depth into specific topics as support of other activities. They are characterized by some features such as favoring interaction between students and lecturers or improving their communication skills. Hence, planning and organizing strategic seminars is indeed a great challenge for lecturers with the aim of acquiring knowledge and abilities. This paper proposes a method using Artificial Intelligence techniques to obtain student profiles from their marks and preferences. The goal of building such profiles is twofold. First, it facilitates the task of splitting the students into different groups, each group with similar preferences and learning difficulties. Second, it makes it easy to select adequate topics to be a candidate for the seminars. The results obtained can be either a guarantee of what the lecturers could observe during the development of the course or a clue to reconsider new methodological strategies in certain topics.

Design of a Tube Vent to Enhance the Role of Roof Solar Collector

The objective of this paper was to designing a ventilation system to enhance the performance of roof solar collector (RSC) for reducing heat accumulation inside the house. The RSC has 1.8 m2 surface area made of CPAC monier roof tiles on the upper part and gypsum board on the lower part. The space between CPAC monier and gypsum board was fixed at 14 cm. Ventilation system of modified roof solar collector (modified RSC) consists of 9 tubes of 0.15m diameter and installed in the lower part of RSC. Experimental result showed that the temperature of the room, and attic temperature. The average temperature reduction of room of house used modified RSC is about 2oC. and the percentage of room temperature reduction varied between 0 to 10%. Therefore, modified RSC is an interesting option in the sense that it promotes solar energy and conserve energy.

Performance Assessment of Computational Gridon Weather Indices from HOAPS Data

Long term rainfall analysis and prediction is a challenging task especially in the modern world where the impact of global warming is creating complications in environmental issues. These factors which are data intensive require high performance computational modeling for accurate prediction. This research paper describes a prototype which is designed and developed on grid environment using a number of coupled software infrastructural building blocks. This grid enabled system provides the demanding computational power, efficiency, resources, user-friendly interface, secured job submission and high throughput. The results obtained using sequential execution and grid enabled execution shows that computational performance has enhanced among 36% to 75%, for decade of climate parameters. Large variation in performance can be attributed to varying degree of computational resources available for job execution. Grid Computing enables the dynamic runtime selection, sharing and aggregation of distributed and autonomous resources which plays an important role not only in business, but also in scientific implications and social surroundings. This research paper attempts to explore the grid enabled computing capabilities on weather indices from HOAPS data for climate impact modeling and change detection.

The Effect of High-speed Milling on Surface Roughness of Hardened Tool Steel

The objective of this research was to study factors, which were affected on surface roughness in high speed milling of hardened tool steel. Material used in the experiment was tool steel JIS SKD 61 that hardened on 60 ±2 HRC. Full factorial experimental design was conducted on 3 factors and 3 levels (3 3 designs) with 2 replications. Factors were consisted of cutting speed, feed rate, and depth of cut. The results showed that influenced factor affected to surface roughness was cutting speed, feed rate and depth of cut which showed statistical significant. Higher cutting speed would cause on better surface quality. On the other hand, higher feed rate would cause on poorer surface quality. Interaction of factor was found that cutting speed and depth of cut were significantly to surface quality. The interaction of high cutting speed associated with low depth of cut affected to better surface quality than low cutting speed and high depth of cut.

SOA Embedded in BPM: A High Level View of Object Oriented Paradigm

The trends of design and development of information systems have undergone a variety of ongoing phases and stages. These variations have been evolved due to brisk changes in user requirements and business needs. To meet these requirements and needs, a flexible and agile business solution was required to come up with the latest business trends and styles. Another obstacle in agility of information systems was typically different treatment of same diseases of two patients: business processes and information services. After the emergence of information technology, the business processes and information systems have become counterparts. But these two business halves have been treated under totally different standards. There is need to streamline the boundaries of these both pillars that are equally sharing information system's burdens and liabilities. In last decade, the object orientation has evolved into one of the major solutions for modern business needs and now, SOA is the solution to shift business on ranks of electronic platform. BPM is another modern business solution that assists to regularize optimization of business processes. This paper discusses how object orientation can be conformed to incorporate or embed SOA in BPM for improved information systems.

Knowledge Representation and Retrieval in Design Project Memory

Knowledge sharing in general and the contextual access to knowledge in particular, still represent a key challenge in the knowledge management framework. Researchers on semantic web and human machine interface study techniques to enhance this access. For instance, in semantic web, the information retrieval is based on domain ontology. In human machine interface, keeping track of user's activity provides some elements of the context that can guide the access to information. We suggest an approach based on these two key guidelines, whilst avoiding some of their weaknesses. The approach permits a representation of both the context and the design rationale of a project for an efficient access to knowledge. In fact, the method consists of an information retrieval environment that, in the one hand, can infer knowledge, modeled as a semantic network, and on the other hand, is based on the context and the objectives of a specific activity (the design). The environment we defined can also be used to gather similar project elements in order to build classifications of tasks, problems, arguments, etc. produced in a company. These classifications can show the evolution of design strategies in the company.

The Design and Implementation of Classifying Bird Sounds

This Classifying Bird Sounds (chip notes) project-s purpose is to reduce the unwanted noise from recorded bird sound chip notes, design a scheme to detect differences and similarities between recorded chip notes, and classify bird sound chip notes. The technologies of determining the similarities of sound waves have been used in communication, sound engineering and wireless sound applications for many years. Our research is focused on the similarity of chip notes, which are the sounds from different birds. The program we use is generated by Microsoft Cµ.

The Environmental Conservation Behavior of the Applied Health Science Students of Green and Clean University

The aim of this study was to investigate the environmental conservation behavior of the Applied Health Science students of Suranaree University of Technology, a green and clean university. The sample group was 184 Applied Health Science students (medical, nursing, and public health). A questionnaire was used to collect information. The result of the study found that the students had more negative than positive behaviors towards energy, water, and forest conservation. This result can be used as basic information for designing long-term behavior modification activities or research projects on environmental conservation. Thus Applied Health Science students will be encouraged to be conscious and also be a good example of environmental conservation behavior.

Alcoholic Extract of Terminalia Arjuna Protects Rabbit Heart against Ischemic-Reperfusion Injury: Role of Antioxidant Enzymes and Heat Shock Protein

The present study was designed to investigate the cardio protective role of chronic oral administration of alcoholic extract of Terminalia arjuna in in-vivo ischemic reperfusion injury and the induction of HSP72. Rabbits, divided into three groups, and were administered with the alcoholic extract of the bark powder of Terminalia arjuna (TAAE) by oral gavage [6.75mg/kg: (T1) and 9.75mg/kg: (T2), 6 days /week for 12 weeks]. In open-chest Ketamine pentobarbitone anaesthetized rabbits, the left anterior descending coronary artery was occluded for 15 min of ischemia followed by 60 min of reperfusion. In the vehicle-treated group, ischemic-reperfusion injury (IRI) was evidenced by depression of global hemodynamic function (MAP, HR, LVEDP, peak LV (+) & (- ) (dP/dt) along with depletion of HEP compounds. Oxidative stress in IRI was evidenced by, raised levels of myocardial TBARS and depletion of endogenous myocardial antioxidants GSH, SOD and catalase. Western blot analysis showed a single band corresponding to 72 kDa in homogenates of hearts from rabbits treated with both the doses. In the alcoholic extract of the bark powder of Terminalia arjuna treatment groups, both the doses had better recovery of myocardial hemodynamic function, with significant reduction in TBARS, and rise in SOD, GSH, catalase were observed. The results of the present study suggest that the alcoholic extract of the bark powder of Terminalia arjuna in rabbit induces myocardial HSP 72 and augments myocardial endogenous antioxidants, without causing any cellular injury and offered better cardioprotection against oxidative stress associated with myocardial IR injury.

Simulated Annealing Algorithm for Data Aggregation Trees in Wireless Sensor Networks and Comparison with Genetic Algorithm

In ad hoc networks, the main issue about designing of protocols is quality of service, so that in wireless sensor networks the main constraint in designing protocols is limited energy of sensors. In fact, protocols which minimize the power consumption in sensors are more considered in wireless sensor networks. One approach of reducing energy consumption in wireless sensor networks is to reduce the number of packages that are transmitted in network. The technique of collecting data that combines related data and prevent transmission of additional packages in network can be effective in the reducing of transmitted packages- number. According to this fact that information processing consumes less power than information transmitting, Data Aggregation has great importance and because of this fact this technique is used in many protocols [5]. One of the Data Aggregation techniques is to use Data Aggregation tree. But finding one optimum Data Aggregation tree to collect data in networks with one sink is a NP-hard problem. In the Data Aggregation technique, related information packages are combined in intermediate nodes and form one package. So the number of packages which are transmitted in network reduces and therefore, less energy will be consumed that at last results in improvement of longevity of network. Heuristic methods are used in order to solve the NP-hard problem that one of these optimization methods is to solve Simulated Annealing problems. In this article, we will propose new method in order to build data collection tree in wireless sensor networks by using Simulated Annealing algorithm and we will evaluate its efficiency whit Genetic Algorithm.

A Training Model for Successful Implementation of Enterprise Resource Planning

It well recognized that one feature that makes a successful company is its ability to successfully align its business goals with its information communication technologies platform. Enterprise Resource Planning (ERP) systems contribute to achieve better performance by integrating various business functions and providing support for information flows. However, the technological systems complexity is known to prevent the business users to exploit in an efficient way the Enterprise Resource Planning Systems (ERP). This paper aims to investigate the role of training in improving the usage of ERP systems. To this end, we have designed an instrument survey to employees of a Norwegian multinational global provider of technology solutions. Based on the analysis of collected data, we have delineated a training model that could be high relevance for both researchers and practitioners as a step towards a better understanding of ERP system implementation.

Solubility of Organics in Water and Silicon Oil: A Comparative Study

The aim of this study was to compare the solubility of selected volatile organic compounds in water and silicon oil using the simple static headspace method. The experimental design allowed equilibrium achievement within 30 – 60 minutes. Infinite dilution activity coefficients and Henry-s law constants for various organics representing esters, ketones, alkanes, aromatics, cycloalkanes and amines were measured at 303K. The measurements were reproducible with a relative standard deviation and coefficient of variation of 1.3x10-3 and 1.3 respectively. The static determined activity coefficients using shaker flasks were reasonably comparable to those obtained using the gas liquid - chromatographic technique and those predicted using the group contribution methods mainly the UNIFAC. Silicon oil chemically known as polydimethysiloxane was found to be better absorbent for VOCs than water which quickly becomes saturated. For example the infinite dilution mole fraction based activity coefficients of hexane is 0.503 and 277 000 in silicon oil and water respectively. Thus silicon oil gives a superior factor of 550 696. Henry-s law constants and activity coefficients at infinite dilution play a significant role in the design of scrubbers for abatement of volatile organic compounds from contaminated air streams. This paper presents the phase equilibrium of volatile organic compounds in very dilute aqueous and polymeric solutions indicating the movement and fate of chemical in air and solvent. The successful comparison of the results obtained here and those obtained using other methods by the same authors and in literature, means that the results obtained here are reliable.

Distributed Detection and Optimal Traffic-blocking of Network Worms

Despite the recent surge of research in control of worm propagation, currently, there is no effective defense system against such cyber attacks. We first design a distributed detection architecture called Detection via Distributed Blackholes (DDBH). Our novel detection mechanism could be implemented via virtual honeypots or honeynets. Simulation results show that a worm can be detected with virtual honeypots on only 3% of the nodes. Moreover, the worm is detected when less than 1.5% of the nodes are infected. We then develop two control strategies: (1) optimal dynamic trafficblocking, for which we determine the condition that guarantees minimum number of removed nodes when the worm is contained and (2) predictive dynamic traffic-blocking–a realistic deployment of the optimal strategy on scale-free graphs. The predictive dynamic traffic-blocking, coupled with the DDBH, ensures that more than 40% of the network is unaffected by the propagation at the time when the worm is contained.

Nonlinear Fuzzy Tracking Real-time-based Control of Drying Parameters

The highly nonlinear characteristics of drying processes have prompted researchers to seek new nonlinear control solutions. However, the relation between the implementation complexity, on-line processing complexity, reliability control structure and controller-s performance is not well established. The present paper proposes high performance nonlinear fuzzy controllers for a real-time operation of a drying machine, being developed under a consistent match between those issues. A PCI-6025E data acquisition device from National Instruments® was used, and the control system was fully designed with MATLAB® / SIMULINK language. Drying parameters, namely relative humidity and temperature, were controlled through MIMOs Hybrid Bang-bang+PI (BPI) and Four-dimensional Fuzzy Logic (FLC) real-time-based controllers to perform drying tests on biological materials. The performance of the drying strategies was compared through several criteria, which are reported without controllers- retuning. Controllers- performance analysis has showed much better performance of FLC than BPI controller. The absolute errors were lower than 8,85 % for Fuzzy Logic Controller, about three times lower than the experimental results with BPI control.

Design of Folded Cascode OTA in Different Regions of Operation through gm/ID Methodology

This paper presents an optimized methodology to folded cascode operational transconductance amplifier (OTA) design. The design is done in different regions of operation, weak inversion, strong inversion and moderate inversion using the gm/ID methodology in order to optimize MOS transistor sizing. Using 0.35μm CMOS process, the designed folded cascode OTA achieves a DC gain of 77.5dB and a unity-gain frequency of 430MHz in strong inversion mode. In moderate inversion mode, it has a 92dB DC gain and provides a gain bandwidth product of around 69MHz. The OTA circuit has a DC gain of 75.5dB and unity-gain frequency limited to 19.14MHZ in weak inversion region.

Design and Implementation of Secure Electronic Payment System (Client)

Secure electronic payment system is presented in this paper. This electronic payment system is to be secure for clients such as customers and shop owners. The security architecture of the system is designed by RC5 encryption / decryption algorithm. This eliminates the fraud that occurs today with stolen credit card numbers. The symmetric key cryptosystem RC5 can protect conventional transaction data such as account numbers, amount and other information. This process can be done electronically using RC5 encryption / decryption program written by Microsoft Visual Basic 6.0. There is no danger of any data sent within the system being intercepted, and replaced. The alternative is to use the existing network, and to encrypt all data transmissions. The system with encryption is acceptably secure, but that the level of encryption has to be stepped up, as computing power increases. Results In order to be secure the system the communication between modules is encrypted using symmetric key cryptosystem RC5. The system will use simple user name, password, user ID, user type and cipher authentication mechanism for identification, when the user first enters the system. It is the most common method of authentication in most computer system.

Evaluating Performance of Quality-of-Service Routing in Large Networks

The performance and complexity of QoS routing depends on the complex interaction between a large set of parameters. This paper investigated the scaling properties of source-directed link-state routing in large core networks. The simulation results show that the routing algorithm, network topology, and link cost function each have a significant impact on the probability of successfully routing new connections. The experiments confirm and extend the findings of other studies, and also lend new insight designing efficient quality-of-service routing policies in large networks.