Development of High Strength Self Curing Concrete Using Super Absorbing Polymer

Concrete is an essential building material which is widely used in construction industry all over the world due to its compressible strength. Curing of concrete plays a vital role in durability and other performance necessities. Improper curing can affect the concrete performance and durability easily. When areas like scarcity of water, structures is not accessible by humans external curing cannot be performed, so we opt for internal curing. Internal curing (or) self curing plays a major role in developing the concrete pore structure and microstructure. The concept of internal curing is to enhance the hydration process to maintain the temperature uniformly. The evaporation of water in the concrete is reduced by self curing agent (Super Absorbing Polymer – SAP) there by increasing the water retention capacity of the concrete. The research work was carried out to reduce water, which is prime material used for concrete in the construction industry. Concrete curing plays a major role in developing hydration process. Concept of self curing will reduce the evaporation of water from concrete. Self curing will increase water retention capacity as compared to the conventional concrete. Proper self curing (or) internal curing increases the strength, durability and performance of concrete. Super absorbing Polymer (SAP) used as internal curing agent. In this study 0.2% to 0.4% of SAP was varied in different grade of high strength concrete. In the experiment replacement of cement by silica fumes with 5%, 10% and 15% are studied. It is found that replacement of silica fumes by 10 % gives more strength and durability when compared to others.

Influence of Crystal Orientation on Electromechanical Behaviors of Relaxor Ferroelectric P(VDF-TrFE-CTFE) Terpolymer

In this current contribution, authors are dedicated to investigate influence of the crystal lamellae orientation on electromechanical behaviors of relaxor ferroelectric Poly (vinylidene fluoride –trifluoroethylene -chlorotrifluoroethylene) (P(VDF-TrFE-CTFE)) films by control of polymer microstructure, aiming to picture the full map of structure-property relationship. In order to define their crystal orientation films, terpolymer films were fabricated by solution-casting, stretching and hot-pressing process. Differential scanning calorimetry, impedance analyzer, and tensile strength techniques were employed to characterize crystallographic parameters, dielectric permittivity, and elastic Young’s modulus respectively. In addition, large electrical induced out-of-plane electrostrictive strain was obtained by cantilever beam mode. Consequently, as-casted pristine films exhibited surprisingly high electrostrictive strain 0.1774% due to considerably small value of elastic Young’s modulus although relatively low dielectric permittivity. Such reasons contributed to large mechanical elastic energy density. Instead, due to 2 folds increase of elastic Young’s modulus and less than 50% augmentation of dielectric constant, fullycrystallized film showed weak electrostrictive behavior and mechanical energy density as well. And subjected to mechanical stretching process, Film C exhibited stronger dielectric constant and out-performed electrostrictive strain over Film B because edge-on crystal lamellae orientation induced by uniaxially mechanical stretch. Hot-press films were compared in term of cooling rate. Rather large electrostrictive strain of 0.2788% for hot-pressed Film D in quenching process was observed although its dielectric permittivity equivalent to that of pristine as-casted Film A, showing highest mechanical elastic energy density value of 359.5 J/m3. In hot-press cooling process, dielectric permittivity of Film E saw values at 48.8 concomitant with ca.100% increase of Young’s modulus. Films with intermediate mechanical energy density were obtained.

Collocation Errors in English as Second Language (ESL) Essay Writing

In language learning, second language learners as well as Native speakers commit errors in their attempt to achieve competence in the target language. The realm of collocation has to do with meaning relation between lexical items. In all human language, there is a kind of ‘natural order’ in which words are arranged or relate to one another in sentences so much so that when a word occurs in a given context, the related or naturally co-occurring word will automatically come to the mind. It becomes an error, therefore, if students inappropriately pair or arrange such ‘naturally’ co–occurring lexical items in a text. It has been observed that most of the second language learners in this research group commit collocation errors. A study of this kind is very significant as it gives insight into the kinds of errors committed by learners. This will help the language teacher to be able to identify the sources and causes of such errors as well as correct them thereby guiding, helping and leading the learners towards achieving some level of competence in the language. The aim of the study is to understand the nature of these errors as stumbling blocks to effective essay writing. The objective of the study is to identify the errors, analyze their structural compositions so as to determine whether there are similarities between students in this regard and to find out whether there are patterns to these kinds of errors which will enable the researcher to understand their sources and causes. As a descriptive research, the researcher samples some nine hundred essays collected from three hundred undergraduate learners of English as a second language in the Federal College of Education, Kano, North- West Nigeria, i.e. three essays per each student. The essays which were given on three different lecture times were of similar thematic preoccupations (i.e. same topics) and length (i.e. same number of words). The essays were written during the lecture hour at three different lecture occasions. The errors were identified in a systematic manner whereby errors so identified were recorded only once even if they occur severally in students’ essays. The data was collated using percentages in which the identified numbers of occurrences were converted accordingly in percentages. The findings from the study indicate that there are similarities as well as regular and repeated errors which provided a pattern. Based on the pattern identified, the conclusion is that students’ collocation errors are attributable to poor teaching and learning which resulted in wrong generalization of rules.

Application of Adaptive Genetic Algorithm in Function Optimization

The crossover probability and mutation probability are the two important factors in genetic algorithm. The adaptive genetic algorithm can improve the convergence performance of genetic algorithm, in which the crossover probability and mutation probability are adaptively designed with the changes of fitness value. We apply adaptive genetic algorithm into a function optimization problem. The numerical experiment represents that adaptive genetic algorithm improves the convergence speed and avoids local convergence.

The Importance of Raising Awareness of Collocational Knowledge in ESL/EFL Classrooms

The most crucial aspect that is closely related to vocabulary and the one that needs to be emphasized and investigated more than it has been up until now, is the ability to combine words that co-occur frequently in the language. Pedagogically, collocation is one of the error-provoking aspects in foreign language learning. This is indicative of the dire need to provide L2 learners with tools to help them improve their collocational knowledge. This paper pinpoints the role that collocations play in the English language. Furthermore, it presents pedagogical implications for ESL/EFL learners.

Economic Analysis of Domestic Combined Heat and Power System in the UK

A combined heat and power (CHP) system is an efficient and clean way to generate power (electricity). Heat produced by the CHP system can be used for water and space heating. The CHP system which uses hydrogen as fuel produces zero carbon emission. Its’ efficiency can reach more than 80% whereas that of a traditional power station can only reach up to 50% because much of the thermal energy is wasted. The other advantages of CHP systems include that they can decentralize energy generation, improve energy security and sustainability, and significantly reduce the energy cost to the users. This paper presents the economic benefits of using a CHP system in the domestic environment. For this analysis, natural gas is considered as potential fuel as the hydrogen fuel cell based CHP systems are rarely used. UK government incentives for CHP systems are also considered as the added benefit. Results show that CHP requires a significant initial investment in returns it can reduce the annual energy bill significantly. Results show that an investment may be paid back in 7 years. After the back period, CHP can run for about 3 years as most of the CHP manufacturers provide 10 year warranty.

A Fault-Tolerant Full Adder in Double Pass CMOS Transistor

This paper presents a fault-tolerant implementation for adder schemes using the dual duplication code. To prove the efficiency of the proposed method, the circuit is simulated in double pass transistor CMOS 32nm technology and some transient faults are voluntary injected in the Layout of the circuit. This fully differential implementation requires only 20 transistors which mean that the proposed design involves 28.57% saving in transistor count compared to standard CMOS technology.

Development of Blast Vibration Equation Considering the Polymorphic Characteristics of Basaltic Ground

Geological structure formed by volcanic activities shows polymorphic characteristics due to repeated cooling and hardening of lava. The Jeju region is showing polymorphic characteristics in which clinker layers are irregularly distributed along with vesicular basalt due to volcanic activities. Accordingly, resident damages and environmental disputes occur frequently in the Jeju region due to blasting. The purpose of this study is to develop a blast vibration equation considering the polymorphic characteristics of basaltic ground in Jeju. The blast vibration equation consists of a functional formula of the blasting vibration constant K that changes according to ground characteristics, and attenuation index n. The case study results in Jeju showed that if there are clinker layers, attenuation index n showed a distribution of -1.32~-1.81, whereas if there are no clinker layers, n was -2.79. Moreover, if there are no clinker layers, the frequency of blast vibration showed a high frequency band from 30Hz to 100Hz, while in rocks with clinker layers it showed a low frequency band from 10Hz to 20Hz.

A Review on Applications of Nanotechnology in Automotive Industry

Nanotechnology in pristine sense refers to building of structures at atomic and molecular scale. Meticulously nanotechnology encompasses the nanomaterials with at least one dimension size ranging from 1 to 100 nanometres. Unlike the literal meaning of its name, nanotechnology is a massive concept beyond imagination. This paper predominantly deals with relevance of nanotechnology in automotive industries. New generation of automotives looks at nanotechnology as an emerging trend of manufacturing revolution. Intricate shapes can be made out of fairly inexpensive raw materials instead of conventional fabrication process. Though the current era have enough technology to face competition, nanotechnology can give futuristic implications to pick up the modern pace. Nanotechnology intends to bridge the gap between automotives with superior technical performance and their cost fluctuation. Preliminarily, it is an area of great scientific interest and a major shaper of many new technologies. Nanotechnology can be an ideal building block for automotive industries, under constant evolution offering a very wide scope of activity. It possesses huge potential and is still in the embryonic form of research and development.

The Study of the Mutual Effect of Genotype in Environment by Percent of Oil Criterion in Sunflower

In order to study the Mutual effect of genotype × environment for the percent of oil index in sunflower items, an experiment was accomplished form complete random block designs in four iteration and was four diverse researching station comprising Esfahan, Birjand, Sari, and Karaj. Complex variance analysis showed that there is an important diversity between the items under investigation. The results relevant the coefficient variation of items Azargol and Vidoc has respectively allocated the minimum coefficient of variations. According to the results extrapolated from Shokla stability variance, the Items Brocar, Allison and Fabiola, are among the stable genotypes for oil percent respectively. In the biplot GGE, the location under investigations divided in two superenvironments, first one comprised of locations naming Esfahan, Karaj, and Birjand, and second one were such a location as Sari. By this point of view, in the first super-environment, the Item Fabiola and in the second Almanzor item was among the best items and crops.

Organizational Involvement and Employees’ Consumption of New Work Practices in State-owned Enterprises: The Ghanaian Case

This paper explored the challenges faced by the management of a Ghanaian state enterprise in managing conflicts and disturbances associated with its attempt to implement new work practices to enhance its capability to operate as a commercial entity. The purpose was to understand the extent to which organizational involvement, consistency and adaptability influence employees’ consumption of new work practices in transforming the organization’s organizational activity system. Using selfadministered questionnaires, data were collected from one hundred and eighty (180) employees and analyzed using both descriptive and inferential statistics. The results showed that constraints in organizational involvement and adaptability prevented the positive consumption of new work practices by employees in the organization. It is also found that the organization’s employees failed to consume the new practices being implemented, because they perceived the process as non-involving, and as such, did not encourage the development of employee capability, empowerment, and teamwork. The study concluded that the failure of the organization’s management to create opportunities for organizational learning constrained its ability to get employees consume the new work practices, which situation could have facilitated the organization’s capabilities of operating as a commercial entity.

Opponent Color and Curvelet Transform Based Image Retrieval System Using Genetic Algorithm

In order to retrieve images efficiently from a large database, a unique method integrating color and texture features using genetic programming has been proposed. Opponent color histogram which gives shadow, shade, and light intensity invariant property is employed in the proposed framework for extracting color features. For texture feature extraction, fast discrete curvelet transform which captures more orientation information at different scales is incorporated to represent curved like edges. The recent scenario in the issues of image retrieval is to reduce the semantic gap between user’s preference and low level features. To address this concern, genetic algorithm combined with relevance feedback is embedded to reduce semantic gap and retrieve user’s preference images. Extensive and comparative experiments have been conducted to evaluate proposed framework for content based image retrieval on two databases, i.e., COIL-100 and Corel-1000. Experimental results clearly show that the proposed system surpassed other existing systems in terms of precision and recall. The proposed work achieves highest performance with average precision of 88.2% on COIL-100 and 76.3% on Corel, the average recall of 69.9% on COIL and 76.3% on Corel. Thus, the experimental results confirm that the proposed content based image retrieval system architecture attains better solution for image retrieval.

Experimental Investigation of Proton Exchange Membrane Fuel Cells Operated with Nanofiber and Nanofiber/Nanoparticle

Nanofibers are defined as fibers with diameters less than 100 nanometers. In this study, behaviours of activated carbon nanofiber (ACNF), carbon nanofiber (CNF), polyacrylonitrile/ carbon nanotube (PAN/CNT), polyvinyl alcohol/nanosilver (PVA/Ag) in proton exchange membrane (PEM) fuel cells are investigated experimentally. This material was used as gas diffusion layer (GDL) in PEM fuel cells. In this study, the electrical conductivities of nanofiber and nanofiber/nanoparticles have been studied to understand their effects on PEM fuel cell performance. According to the experimental results, the maximum electrical conductivity performance of the fuel cell with nanofiber was found to be at PVA/Ag (at UConn condition). The electrical conductivities of CNF, ACNF, PAN/CNT are lower for PEM. The resistance of cell with PVA/Ag is lower than the resistance of cell with PAN/CNT, ACNF, CNF.

Broadband Baseband Impedance Control for Linearity Enhancement in Microwave Devices

The out-of-band impedance environment is considered to be of paramount importance in engineering the in-band impedance environment. Presenting the frequency independent and constant outof- band impedances across the wide modulation bandwidth is extremely important for reliable device characterization for future wireless systems. This paper presents an out-of-band impedance optimization scheme based on simultaneous engineering of significant baseband components IF1 (twice the modulation frequency) and IF2 (four times the modulation frequency) and higher baseband components such as IF3 (six times the modulation frequency) and IF4 (eight times the modulation frequency) to engineer the in-band impedance environment. The investigations were carried out on a 10W GaN HEMT device driven to deliver a peak envelope power of approximately 40.5dBm under modulated excitation. The presentation of frequency independent baseband impedances to all the significant baseband components whilst maintaining the optimum termination for fundamental tones as well as reactive termination for 2nd harmonic under class-J mode of operation has outlined separate optimum impedances for best intermodulation (IM) linearity.

Modeling the Time-Dependent Rheological Behavior of Clays Used in Fabrication of Ceramic

In this study, we investigated the thixotropic behavior of two clays used in fabrication of ceramic. The structural kinetic model (SKM) was used to characterize the thixotropic behavior of two different kinds of clays used in fabrication of ceramic. The SKM postulates that the change in the rheological behavior is associated with shear-induced breakdown of the internal structure of the clays. This model for the structure decay with time at constant shear rate assumes nth order kinetics for the decay of the material structure with a rate constant.

An Experimental Investigation of Petrodiesel and Cotton Seed Biodiesel (CSOME) in Diesel Engine

Biodiesel is widely investigated to solve the twin problem of depletion of fossil fuel and environmental degradation. The main objective of the present work is to compare performance, emissions, and combustion characteristics of biodiesel derived from cotton seed oil in a diesel engine with the baseline results of petrodiesel fuel. Tests have been conducted on a single cylinder, four stroke CIDI diesel engine with a speed of 1500 rpm and a fixed compression ratio of 17.5 at different load conditions. The performance parameters evaluated include brake thermal efficiency, brake specific fuel consumption, brake power, indicated mean effective pressure, mechanical efficiency, and exhaust gas temperature. Regarding combustion study, cylinder pressure, rate of pressure rise, net heat release rate, cumulative heat release, mean gas temperature, mass fraction burned, and fuel line pressure were evaluated. The emission parameters such as carbon monoxide, carbon dioxide, un-burnt hydrocarbon, oxides of nitrogen, and smoke opacity were also measured by a smoke meter and an exhaust gas analyzer and compared with baseline results. The brake thermal efficiency of cotton seed oil methyl ester (CSOME) was lower than that of petrodiesel and brake specific fuel consumption was found to be higher. However, biodiesel resulted in the reduction of carbon dioxide, un-burnt hydrocarbon, and smoke opacity at the expense of nitrogen oxides. Carbon monoxide emissions for biodiesel was higher at maximum output power. It has been found that the combustion characteristics of cotton seed oil methyl ester closely followed those of standard petrodiesel. The experimental results suggested that biodiesel derived from cotton seed oil could be used as a good substitute to petrodiesel fuel in a conventional diesel without any modification.

A Two-Way Wilkinson Power Divider Realized Using One Eighth Wave Transmission Line for GSM Application

In this paper, a modified Wilkinson power divider for GSM application is presented. The quarter–wavelength microstrip lines in the conventional Wilkinson power divider (WPD) are replaced by one-eighth wavelength transmission line. Wilkinson power divider is designed using λ/4 and λ/8 transmission line. It has the operating frequency of 915 MHz which is used in the GSM standard. The proposed Wilkinson Power Divider is designed using the simulation tool Advanced Design System. The results of λ/8 transmission line are very close to the results of λ/4 transmission line. The isolation loss of λ/8 transmission line is improved by introducing a capacitor between the output ports. The proposed Wilkinson power divider has the best return loss of greater than -10 dB and isolation loss of -15.25 dB. The λ/8 transmission line Wilkinson power divider has the reduced size of 53.9 percentages than λ/4 transmission line WPD. The proposed design has simple structure, better isolation loss and good insertion loss.

Structural Health Monitoring of Offshore Structures Using Wireless Sensor Networking under Operational and Environmental Variability

The early-stage damage detection in offshore structures requires continuous structural health monitoring and for the large area the position of sensors will also plays an important role in the efficient damage detection. Determining the dynamic behavior of offshore structures requires dense deployment of sensors. The wired Structural Health Monitoring (SHM) systems are highly expensive and always needs larger installation space to deploy. Wireless sensor networks can enhance the SHM system by deployment of scalable sensor network, which consumes lesser space. This paper presents the results of wireless sensor network based Structural Health Monitoring method applied to a scaled experimental model of offshore structure that underwent wave loading. This method determines the serviceability of the offshore structure which is subjected to various environment loads. Wired and wireless sensors were installed in the model and the response of the scaled BLSRP model under wave loading was recorded. The wireless system discussed in this study is the Raspberry pi board with Arm V6 processor which is programmed to transmit the data acquired by the sensor to the server using Wi-Fi adapter, the data is then hosted in the webpage. The data acquired from the wireless and wired SHM systems were compared and the design of the wireless system is verified.

Nonlinear Analysis of Postural Sway in Multiple Sclerosis

Multiple Sclerosis (MS) is a disease which affects the central nervous system and causes balance problem. In clinical, this disorder is usually evaluated using static posturography. Some linear or nonlinear measures, extracted from the posturographic data (i.e. center of pressure, COP) recorded during a balance test, has been used to analyze postural control of MS patients. In this study, the trend (TREND) and the sample entropy (SampEn), two nonlinear parameters were chosen to investigate their relationships with the expanded disability status scale (EDSS) score. 40 volunteers with different EDSS scores participated in our experiments with eyes open (EO) and closed (EC). TREND and 2 types of SampEn (SampEn1 and SampEn2) were calculated for each combined COP’s position signal. The results have shown that TREND had a weak negative correlation to EDSS while SampEn2 had a strong positive correlation to EDSS. Compared to TREND and SampEn1, SampEn2 showed a better significant correlation to EDSS and an ability to discriminate the MS patients in the EC case. In addition, the outcome of the study suggests that the multi-dimensional nonlinear analysis could provide some information about the impact of disability progression in MS on dynamics of the COP data.

Use of Carica papaya as a Bio-Sorbent for Removal of Heavy Metals in Wastewater

The study assessed the effectiveness of Pawpaw (Carica papaya) wood in reducing the concentrations of heavy metals in wastewater acting as a bio-sorbent. The following heavy metals were considered; Zinc, Cadmium, Lead, Copper, Iron, Selenium, Nickel and Manganese. The physiochemical properties of Carica papaya stem were studied. The experimental sample was sourced from the trunk of a felled matured pawpaw tree. Wastewater for experimental use was prepared by dissolving soil samples collected from a dump site at Owerri, Imo state of Nigeria in water. The concentration of each metal remaining in solution as residual metal after bio-sorption was determined using Atomic absorption Spectrometer. The effects of pH and initial heavy metal concentration were studied in a batch reactor. The results of Spectrometer test showed that there were different functional groups detected in the Carica papaya stem biomass. There was increase in metal removal as the pH increased for all the metals considered except for Nickel and Manganese. Optimum bio-sorption occurred at pH 5.9 with 5g/100ml solution of bio-sorbent. The results of the study showed that the treated wastewater is fit for irrigation purpose based on Canada wastewater quality guideline for the protection of Agricultural standard. This approach thus provides a cost effective and environmentally friendly option for treating wastewater.