A Two-Way Wilkinson Power Divider Realized Using One Eighth Wave Transmission Line for GSM Application

In this paper, a modified Wilkinson power divider for GSM application is presented. The quarter–wavelength microstrip lines in the conventional Wilkinson power divider (WPD) are replaced by one-eighth wavelength transmission line. Wilkinson power divider is designed using λ/4 and λ/8 transmission line. It has the operating frequency of 915 MHz which is used in the GSM standard. The proposed Wilkinson Power Divider is designed using the simulation tool Advanced Design System. The results of λ/8 transmission line are very close to the results of λ/4 transmission line. The isolation loss of λ/8 transmission line is improved by introducing a capacitor between the output ports. The proposed Wilkinson power divider has the best return loss of greater than -10 dB and isolation loss of -15.25 dB. The λ/8 transmission line Wilkinson power divider has the reduced size of 53.9 percentages than λ/4 transmission line WPD. The proposed design has simple structure, better isolation loss and good insertion loss.

Design of Reconfigurable 2 Way Wilkinson Power Divider for WLAN Applications

A Reconfigurable Wilkinson power divider is proposed in this paper. In existing system only a limited number of bandwidth is used at the output ports, in the proposed Wilkinson power divider different band of frequencies are obtained by using PIN diode. By tuning the PIN diode, different frequencies are achieved. The size of the power divider is reduced for the operating frequency and increases the fractional bandwidth.

A Novel Design of a Low Cost Wideband Wilkinson Power Divider

This paper presents analysis and design of a wideband Wilkinson power divider for wireless applications. The design is accomplished by transforming the lengths and impedances of the quarter wavelength sections of the conventional Wilkinson power divider into U-shaped sections. The designed power divider is simulated by using ADS Agilent technologies and CST microwave studio software. It is shown that the proposed power divider has simple topology and good performances in terms of insertion loss, port matching and isolation at all operating frequencies (1.8 GHz, 2.45 GHz and 3.55 GHz).