A Novel and Green Approach to Produce Nano- Porous Materials Zeolite A and MCM-41 from Coal Fly Ash and their Applications in Environmental Protection

Zeolite A and MCM-41 have extensive applications in basic science, petrochemical science, energy conservation/storage, medicine, chemical sensor, air purification, environmentally benign composite structure and waste remediation. However, the use of zeolite A and MCM-41 in these areas, especially environmental remediation, are restricted due to prohibitive production cost. Efficient recycling of and resource recovery from coal fly ash has been a major topic of current international research interest, aimed at achieving sustainable development of human society from the viewpoints of energy, economy, and environmental strategy. This project reported an original, novel, green and fast methods to produce nano-porous zeolite A and MCM-41 materials from coal fly ash. For zeolite A, this novel production method allows a reduction by half of the total production time while maintaining a high degree of crystallinity of zeolite A which exists in a narrower particle size distribution. For MCM-41, this remarkably green approach, being an environmentally friendly process and reducing generation of toxic waste, can produce pure and long-range ordered MCM-41 materials from coal fly ash. This approach took 24 h at 25 oC to produce 9 g of MCM-41 materials from 30 g of the coal fly ash, which is the shortest time and lowest reaction temperature required to produce pure and ordered MCM-41 materials (having the largest internal surface area) compared to the values reported in the literature. Performance evaluation of the produced zeolite A and MCM-41 materials in wastewater treatment and air pollution control were reported. The residual fly ash was also converted to zeolite Na-P1 which showed good performance in removal of multi-metal ions in wastewater. In wastewater treatment, compared to commercial-grade zeolite A, adsorbents produced from coal fly ash were effective in removing multi heavy metal ions in water and could be an alternative material for treatment of wastewater. In methane emission abatement, the zeolite A (produced from coal fly ash) achieved similar methane removal efficiency compared to the zeolite A prepared from pure chemicals. This report provides the guidance for production of zeolite A and MCM-41 from coal fly ash by a cost-effective approach which opens potential applications of these materials in environmental industry. Finally, environmental and economic aspects of production of zeolite A and MCM-41 from coal fly ash were discussed.

Physical Conserved Quantities for the Axisymmetric Liquid, Free and Wall Jets

A systematic way to derive the conserved quantities for the axisymmetric liquid jet, free jet and wall jet using conservation laws is presented. The flow in axisymmetric jets is governed by Prandtl-s momentum boundary layer equation and the continuity equation. The multiplier approach is used to construct a basis of conserved vectors for the system of two partial differential equations for the two velocity components. The basis consists of two conserved vectors. By integrating the corresponding conservation laws across the jet and imposing the boundary conditions, conserved quantities are derived for the axisymmetric liquid and free jet. The multiplier approach applied to the third-order partial differential equation for the stream function yields two local conserved vectors one of which is a non-local conserved vector for the system. One of the conserved vectors gives the conserved quantity for the axisymmetric free jet but the conserved quantity for the wall jet is not obtained from the second conserved vector. The conserved quantity for the axisymmetric wall jet is derived from a non-local conserved vector of the third-order partial differential equation for the stream function. This non-local conserved vector for the third-order partial differential equation for the stream function is obtained by using the stream function as multiplier.

Intelligent Path Planning for Rescue Robot

In this paper, a heuristic method for simultaneous rescue robot path-planning and mission scheduling is introduced based on project management techniques, multi criteria decision making and artificial potential fields path-planning. Groups of injured people are trapped in a disastrous situation. These people are categorized into several groups based on the severity of their situation. A rescue robot, whose ultimate objective is reaching injured groups and providing preliminary aid for them through a path with minimum risk, has to perform certain tasks on its way towards targets before the arrival of rescue team. A decision value is assigned to each target based on the whole degree of satisfaction of the criteria and duties of the robot toward the target and the importance of rescuing each target based on their category and the number of injured people. The resulted decision value defines the strength of the attractive potential field of each target. Dangerous environmental parameters are defined as obstacles whose risk determines the strength of the repulsive potential field of each obstacle. Moreover, negative and positive energies are assigned to the targets and obstacles, which are variable with respects to the factors involved. The simulation results show that the generated path for two cases studies with certain differences in environmental conditions and other risk factors differ considerably.

Experimental Inspection of Damage and Performance Evaluation after Repair and Strengthening of Jiamusi Highway Prestressed Concrete Bridge in China

The main objectives of this study are to inspect and identify any damage of jaimusi highway prestressed concrete bridge after repair and strengthening of damaged structural members and to evaluate the performance of the bridge structural members by adopting static load test. Inspection program after repair and strengthening includes identifying and evaluating the structural members of bridge such as T-shape cantilever structure, hanging beams, corbels, external tendons, anchor beams, sticking steel plate, and piers. The results of inspection show that the overall state of the bridge structural member after repair and strengthening is good. The results of rebound test of concrete strength show that the average strength of concrete is 46.31Mpa. Whereas, the average value of concrete strength of anchor beam is 49.82Mpa. According to the results of static load test, the experimental values are less than theoretical values of internal forces, deflection, and strain, indicating that the stiffness of the experimental structure, overall deformation and integrity satisfy the designed standard and the working performance is good, and the undertaking capacity has a certain surplus. There is not visible change in the length and width of cracks and there are not new cracks under experimental load.

Implementation of Second Order Current- Mode Quadrature Sinusoidal Oscillator with Current Controllability

The realization of current-mode quadrature oscillators using current controlled current conveyor transconductance amplifiers (CCCCTAs) and grounded capacitors is presented. The proposed oscillators can provide 2 sinusoidal output currents with 90º phase difference. It is enabled non-interactive dual-current control for both the condition of oscillation and the frequency of oscillation. High output impedances of the configurations enable the circuit to be cascaded without additional current buffers. The use of only grounded capacitors is ideal for integration. The circuit performances are depicted through PSpice simulations, they show good agreement to theoretical anticipation.

Some Characteristics of Biodegradable Film Substituted by Yam (Dioscorea alata) Starch from Thailand

Yam starch obtained from the water yam (munlued) by the wet milling process was studied for some physicochemical properties. Yam starch film was prepared by casting using glycerol as a plasticizer. The effect of different glycerol (1.30, 1.65 and 2.00g/100g of filmogenic solution) and starch concentrations (3.30, 3.65 and 4.00g /100g of filmogenic solution) were evaluated on some characteristics of the film. The temperature for obtaining the gelatinized starch solution was 70-80°C and then dried at 45°C for 4 hours. The resulting starch from munlued granular morphology was triangular and the average size of the granule was 26.68 μm. The amylose content by colorimetric method was 26 % and the gelatinize temperature was 70-80°C. The appearance of the film was smooth, transparent, and glossy with average moisture content of 25.96% and thickness of 0.01mm. Puncture deformation and flexibility increased with glycerol content. The starch and glycerol concentration were a significant factor of the yam starch film characteristics. Yam starch film can be described as a biofilm providing many applications and developments with the advantage of biodegradability.

Design and Operation of a Multicarrier Energy System Based On Multi Objective Optimization Approach

Multi-energy systems will enhance the system reliability and power quality. This paper presents an integrated approach for the design and operation of distributed energy resources (DER) systems, based on energy hub modeling. A multi-objective optimization model is developed by considering an integrated view of electricity and natural gas network to analyze the optimal design and operating condition of DER systems, by considering two conflicting objectives, namely, minimization of total cost and the minimization of environmental impact which is assessed in terms of CO2 emissions. The mathematical model considers energy demands of the site, local climate data, and utility tariff structure, as well as technical and financial characteristics of the candidate DER technologies. To provide energy demands, energy systems including photovoltaic, and co-generation systems, boiler, central power grid are considered. As an illustrative example, a hotel in Iran demonstrates potential applications of the proposed method. The results prove that increasing the satisfaction degree of environmental objective leads to increased total cost.

Performance Evaluation Standards and Innovation: An Empirical Investigation

In this empirical research, how marketing managers evaluate their firms- performances and decide to make innovation is examined. They use some standards which are past performance of the firm, target performance of the firm, competitor performance, and average performance of the industry to compare and evaluate the firms- performances. It is hypothesized that marketing managers and owners of the firm compare the firms- current performance with these four standards at the same time to decide when to make innovation relating to any aspects of the firm, either management style or products. Relationship between the comparison of the firm-s performance with these standards and innovation are searched in the same regression model. The results of the regression analysis are discussed and some recommendations are made for future studies and applicants.

An Integrated Biotechnology Database of the National Agricultural Information Center in Korea

The National Agricultural Biotechnology Information Center (NABIC) plays a leading role in the biotechnology information database for agricultural plants in Korea. Since 2002, we have concentrated on functional genomics of major crops, building an integrated biotechnology database for agro-biotech information that focuses on bioinformatics of major agricultural resources such as rice, Chinese cabbage, and microorganisms. In the NABIC, integration-based biotechnology database provides useful information through a user-friendly web interface that allows analysis of genome infrastructure, multiple plants, microbial resources, and living modified organisms.

A Method of Protecting Relational Databases Copyright with Cloud Watermark

With the development of Internet and databases application techniques, the demand that lots of databases in the Internet are permitted to remote query and access for authorized users becomes common, and the problem that how to protect the copyright of relational databases arises. This paper simply introduces the knowledge of cloud model firstly, includes cloud generators and similar cloud. And then combined with the property of the cloud, a method of protecting relational databases copyright with cloud watermark is proposed according to the idea of digital watermark and the property of relational databases. Meanwhile, the corresponding watermark algorithms such as cloud watermark embedding algorithm and detection algorithm are proposed. Then, some experiments are run and the results are analyzed to validate the correctness and feasibility of the watermark scheme. In the end, the foreground of watermarking relational database and its research direction are prospected.

Evaluation of Degree and the Effect of Order in the Family on Violence against Children A Survey among Guidance School Students in Gilanegharb City in Iran

A review of the literature found that Domestic violence and child maltreatment co-occur in many families, the purpose of this study attempts to emphasize the factors relating to intra-family relationships (order point of view) on violence against the children, For this purpose a survey technique on the sample size amounted 200 students of governmental guidance schools of city of Gilanegharb in country of Iran were considered. For measurement of violence against the children (VAC) the CTS scaled has been used .The results showed that children have experienced the violence more than once during the last year. degree of order in family is high. Explanation result indicated that the order variables in family including collective thinking, empathy, communal co-circumstance have significant effects on VAC.

Robust Minutiae Watermarking in Wavelet Domain for Fingerprint Security

In this manuscript, a wavelet-based blind watermarking scheme has been proposed as a means to provide security to authenticity of a fingerprint. The information used for identification or verification of a fingerprint mainly lies in its minutiae. By robust watermarking of the minutiae in the fingerprint image itself, the useful information can be extracted accurately even if the fingerprint is severely degraded. The minutiae are converted in a binary watermark and embedding these watermarks in the detail regions increases the robustness of watermarking, at little to no additional impact on image quality. It has been experimentally shown that when the minutiae is embedded into wavelet detail coefficients of a fingerprint image in spread spectrum fashion using a pseudorandom sequence, the robustness is observed to have a proportional response while perceptual invisibility has an inversely proportional response to amplification factor “K". The DWT-based technique has been found to be very robust against noises, geometrical distortions filtering and JPEG compression attacks and is also found to give remarkably better performance than DCT-based technique in terms of correlation coefficient and number of erroneous minutiae.

Nonlinear Time-History Analysis of 3-Dimensional Semi-rigid Steel Frames

This paper presents nonlinear elastic dynamic analysis of 3-D semi-rigid steel frames including geometric and connection nonlinearities. The geometric nonlinearity is considered by using stability functions and updating geometric stiffness matrix. The nonlinear behavior of the steel beam-to-column connection is considered by using a zero-length independent connection element comprising of six translational and rotational springs. The nonlinear dynamic equilibrium equations are solved by the Newmark numerical integration method. The nonlinear time-history analysis results are compared with those of previous studies and commercial SAP2000 software to verify the accuracy and efficiency of the proposed procedure.

Designing Early Warning System: Prediction Accuracy of Currency Crisis by Using k-Nearest Neighbour Method

Developing a stable early warning system (EWS) model that is capable to give an accurate prediction is a challenging task. This paper introduces k-nearest neighbour (k-NN) method which never been applied in predicting currency crisis before with the aim of increasing the prediction accuracy. The proposed k-NN performance depends on the choice of a distance that is used where in our analysis; we take the Euclidean distance and the Manhattan as a consideration. For the comparison, we employ three other methods which are logistic regression analysis (logit), back-propagation neural network (NN) and sequential minimal optimization (SMO). The analysis using datasets from 8 countries and 13 macro-economic indicators for each country shows that the proposed k-NN method with k = 4 and Manhattan distance performs better than the other methods.

Creation of Economic and Social Value by Social Entrepreneurship for Sustainable Development

The ever growing sentiment of environmentalism across the globe has made many people think on the green lines. But most of such ideas halt short of implementation because of the short term economic viability issues with the concept of going green. In this paper we have tried to amalgamate the green concept with social entrepreneurship for solving a variety of issues faced by the society today. In addition the paper also tries to ensure that the short term economic viability does not act as a deterrent. The paper comes up three sustainable models of social entrepreneurship which tackle a wide assortment of issues such as nutrition problem, land problems, pollution problems and employment problems. The models described fall under the following heads: - Spirulina cultivation: The model addresses nutrition, land and employment issues. It deals with cultivation of a blue green alga called Spirulina which can be used as a very nutritious food. Also, the implementation of this model would bring forth employment to the poor people of the area. - Biocomposites: The model comes up with various avenues in which biocomposites can be used in an economically sustainable manner. This model deals with the environmental concerns and addresses the depletion of natural resources. - Packaging material from empty fruit bunches (EFB) of oil palm: This one deals with air and land pollution. It is intended to be a substitute for packaging materials made from Styrofoam and plastics which are non-biodegradable. It takes care of the biodegradability and land pollution issues. It also reduces air pollution as the empty fruit bunches are not incinerated. All the three models are sustainable and do not deplete the natural resources any further. This paper explains each of the models in detail and deals with the operational/manufacturing procedures and cost analysis while also throwing light on the benefits derived and sustainability aspects.

A New Damage Identification Strategy for SHM Based On FBGs and Bayesian Model Updating Method

One of the difficulties of the vibration-based damage identification methods is the nonuniqueness of the results of damage identification. The different damage locations and severity may cause the identical response signal, which is even more severe for detection of the multiple damage. This paper proposes a new strategy for damage detection to avoid this nonuniqueness. This strategy firstly determines the approximates damage area based on the statistical pattern recognition method using the dynamic strain signal measured by the distributed fiber Bragg grating, and then accurately evaluates the damage information based on the Bayesian model updating method using the experimental modal data. The stochastic simulation method is then used to compute the high-dimensional integral in the Bayesian problem. Finally, an experiment of the plate structure, simulating one part of mechanical structure, is used to verify the effectiveness of this approach.

Towards External Varieties to Internal Varieties − Modular Perspective

Product customization is an essential requirement for manufacturing firms to achieve higher customers- satisfaction and fulfill business target. In order to achieve these objectives, firms need to handle both external varieties such as customer preference, government regulations, cultural considerations etc and internal varieties such as functional requirements of product, production efficiency, quality etc. Both of the varieties need to be accumulated and integrated together for the purpose of producing customized product. These varieties are presented and discussed in this paper along with the perspectives of modular product design and development process. Other development strategies such as modularity, component commonality, product family design and product platform are presented with a view to achieve product variety quickly and economically. A case example both for the concept of modular design and platform based product development process is also presented with the help of design structure matrix (DSM) tool. This paper is concluded with several managerial implications and future research direction.

Modern Kazakhstan in Global World After Independence

The article deals with the problems of political and economic processes in Kazakhstan since independence in the context of globalization. It analyzes the geopolitical situation and selfpositioning processes in the world after the end of the "cold war". It examines the problems of internal economization of the Republic for 20 years of independence. The authors argue that the reforms proceeded in the economic sphere have brought ambiguous and tangible results. Despite the difficult economic and political conditions facing a world economical crisis the country has undergone fundamental and radical transformations in the whole socio-economic system

An Application of the Sinc-Collocation Method to a Three-Dimensional Oceanography Model

In this paper, we explore the applicability of the Sinc- Collocation method to a three-dimensional (3D) oceanography model. The model describes a wind-driven current with depth-dependent eddy viscosity in the complex-velocity system. In general, the Sinc-based methods excel over other traditional numerical methods due to their exponentially decaying errors, rapid convergence and handling problems in the presence of singularities in end-points. Together with these advantages, the Sinc-Collocation approach that we utilize exploits first derivative interpolation, whose integration is much less sensitive to numerical errors. We bring up several model problems to prove the accuracy, stability, and computational efficiency of the method. The approximate solutions determined by the Sinc-Collocation technique are compared to exact solutions and those obtained by the Sinc-Galerkin approach in earlier studies. Our findings indicate that the Sinc-Collocation method outperforms other Sinc-based methods in past studies.

Sequence-based Prediction of Gamma-turn Types using a Physicochemical Property-based Decision Tree Method

The γ-turns play important roles in protein folding and molecular recognition. The prediction and analysis of γ-turn types are important for both protein structure predictions and better understanding the characteristics of different γ-turn types. This study proposed a physicochemical property-based decision tree (PPDT) method to interpretably predict γ-turn types. In addition to the good prediction performance of PPDT, three simple and human interpretable IF-THEN rules are extracted from the decision tree constructed by PPDT. The identified informative physicochemical properties and concise rules provide a simple way for discriminating and understanding γ-turn types.