A Study on the Removal of Trace Organic Matter in Water Treatment Procedures Using Powder-activated Carbon Biofilm

This study uses natural water and the surface properties of powdered activated carbon to acclimatize organics, forming biofilms on the surface of powdered activated carbon. To investigate the influence of different hydraulic retention times on the removal efficacy of trace organics in raw water, and to determine the optimal hydraulic retention time of a biological powdered activated carbon system, this study selects ozone-treated water processed by Feng-shan Advanced Water Purification Plant in southern Taiwan for the experiment. The evaluation indicators include assimilable organic carbon, dissolved organic carbon, and total organic carbon. The results of this study can improve the quality of drinking water treated using advanced water purification procedures.

Preparation and Investigation of Photocatalytic Properties of ZnO Nanocrystals: Effect of Operational Parameters and Kinetic Study

ZnO nanocrystals with mean diameter size 14 nm have been prepared by precipitation method, and examined as photocatalyst for the UV-induced degradation of insecticide diazinon as deputy of organic pollutant in aqueous solution. The effects of various parameters, such as illumination time, the amount of photocatalyst, initial pH values and initial concentration of insecticide on the photocatalytic degradation diazinon were investigated to find desired conditions. In this case, the desired parameters were also tested for the treatment of real water containing the insecticide. Photodegradation efficiency of diazinon was compared between commercial and prepared ZnO nanocrystals. The results indicated that UV/ZnO process applying prepared nanocrystalline ZnO offered electrical energy efficiency and quantum yield better than commercial ZnO. The present study, on the base of Langmuir-Hinshelwood mechanism, illustrated a pseudo first-order kinetic model with rate constant of surface reaction equal to 0.209 mg l-1 min-1 and adsorption equilibrium constant of 0.124 l mg-1.

Numbers and Biomass of Bacteria and Fungi Obtained by the Direct Microscopic Count Method

The soil ecology of the organic and mineral soil layers of laurel-leaved and Cryptomeria japonica forest in the Kasuga-yama Hill Primeval Forest (Nara, Japan) was assessed. The number of bacteria obtained by the dilution plate count method was less than 0.05% of those counted by the direct microscopic count. We therefore found that forest soil contains large numbers of non-culturable bacteria compared with agricultural soils. The numbers of bacteria and fungi obtained by both the dilution plate count and the direct microscopic count were larger in the deeper horizons (F and H) of the organic layer than in the mineral soil layer. This suggests that active microbial metabolism takes place in the organic layer. The numbers of bacteria and the length of fungal hyphae obtained by the direct count method were greater in the H horizon than in the F horizon. The direct microscopic count revealed numerous non-culturable bacteria and fungi in the soil. The ratio of fungal to bacterial biomass was lower in the laurel-leaved forest soil. The fungal biomass was therefore relatively low in the laurel-leaved forest soil due to differences in forest vegetation.

Effect of VA-Mycorrhiza on Growth and Yield of Sunflower (Helianthus annuus L.) at Different Phosphorus Levels

The effect of seed inoculation by VA- mycorrhiza and different levels of phosphorus fertilizer on growth and yield of sunflower (Azargol cultivar) was studied in experiment farm of Islamic Azad University, Karaj Branch during 2008 growing season. The experiment treatments were arranged in factorial based on a complete randomized block design with three replications. Four phosphorus fertilizer levels of 25%, 50% 75% and 100% P recommended with two levels of Mycorrhiza: with and without Mycorrhiza (control) were assigned in a factorial combination. Results showed that head diameter, number of seeds in head, seed yield and oil yield were significantly higher in inoculated plants than in non-inoculated plants. Head diameter, number of seeds in head, 1000 seeds weight, biological yield, seed yield and oil yield increased with increasing P level above 75% P recommended in non-inoculated plants, whereas no significant difference was observed between 75% and 100% P recommended. The positive effect of mycorrhizal inoculation decreased with increasing P levels due to decreased percent root colonization at higher P levels. According to the results of this experiment, application of mycorrhiza in present of 50% P recommended had an appropriate performance and could increase seed yield and oil production to an acceptable level, so it could be considered as a suitable substitute for chemical phosphorus fertilizer in organic agricultural systems.

The Coupling of Photocatalytic Oxidation Processes with Activated Carbon Technologies and the Comparison of the Treatment Methods for Organic Removal from Surface Water

The surface water used in this study was collected from the Chao Praya River at the lower part at the Nonthaburi bridge. It was collected and used throughout the experiment. TOC (also known as DOC) in the range between 2.5 to 5.6 mg/l were investigated in this experiment. The use of conventional treatment methods such as FeCl3 and PAC showed that TOC removal was 65% using FeCl3 and 78% using PAC (powder activated carbon). The advanced oxidation process alone showed only 35% removal of TOC. Coupling advanced oxidation with a small amount of PAC (0.05g/L) increased efficiency by upto 55%. The combined BAC with advanced oxidation process and small amount of PAC demonstrated the highest efficiency of up to 95% of TOC removal and lower sludge production compared with other methods.

A Program for Solving problems in Inorganic Chemistry based on Knowledge Base

The Model for Knowledge Base of Computational Objects (KBCO model) has been successfully applied to represent the knowledge of human like Plane Geometry, Physical, Calculus. However, the original model cannot easyly apply in inorganic chemistry field because of the knowledge specific problems. So, the aim of this article is to introduce how we extend the Computional Object (Com-Object) in KBCO model, kinds of fact, problems model, and inference algorithms to develop a program for solving problems in inorganic chemistry. Our purpose is to develop the application that can help students in their study inorganic chemistry at schools. This application was built successful by using Maple, C# and WPF technology. It can solve automatically problems and give human readable solution agree with those writting by students and teachers.

Thermal Stability and Crystallization Behaviour of Modified ABS/PP Nanocomposites

In this research work, poly (acrylonitrile-butadienestyrene)/ polypropylene (ABS/PP) blends were processed by melt compounding in a twin-screw extruder. Upgrading of the thermal characteristics of the obtained materials was attempted by the incorporation of organically modified montmorillonite (OMMT), as well as, by the addition of two types of compatibilizers; polypropylene grafted with maleic anhydride (PP-g-MAH) and ABS grafted with maleic anhydride (ABS-g-MAH). The effect of the above treatments was investigated separately and in combination. Increasing the PP content in ABS matrix seems to increase the thermal stability of their blend and the glass transition temperature (Tg) of SAN phase of ABS. From the other part, the addition of ABS to PP promotes the formation of its β-phase, which is maximum at 30 wt% ABS concentration, and increases the crystallization temperature (Tc) of PP. In addition, it increases the crystallization rate of PP.The β-phase of PP in ABS/PP blends is reduced by the addition of compatibilizers or/and organoclay reinforcement. The incorporation of compatibilizers increases the thermal stability of PP and reduces its melting (ΔΗm) and crystallization (ΔΗc) enthalpies. Furthermore it decreases slightly the Tgs of PP and SAN phases of ABS/PP blends. Regarding the storage modulus of the ABS/PP blends, it presents a change in their behavior at about 10°C and return to their initial behavior at ~110°C. The incorporation of OMMT to no compatibilized and compatibilized ABS/PP blends enhances their storage modulus.

Study of Optical Properties of a Glutathione Capped Gold Nanoparticles Using Linker (MHDA) by Fourier Transform Infra Red Spectroscopy and Surface Enhanced Raman Scattering

16-Mercaptohexadecanoic acid (MHDA) and tripeptide glutathione conjugated with gold nanoparticles (Au-NPs) are characterized by Fourier Transform InfaRared (FTIR) spectroscopy combined with Surface-enhanced Raman scattering (SERS) spectroscopy. Surface Plasmon Resonance (SPR) technique based on FTIR spectroscopy has become an important tool in biophysics, which is perspective for the study of organic compounds. FTIR-spectra of MHDA shows the line at 2500 cm-1 attributed to thiol group which is modified by presence of Au-NPs, suggesting the formation of bond between thiol group and gold. We also can observe the peaks originate from characteristic chemical group. A Raman spectrum of the same sample is also promising. Our preliminary experiments confirm that SERS-effect takes place for MHDA connected with Au-NPs and enable us to detected small number (less than 106 cm-2) of MHDA molecules. Combination of spectroscopy methods: FTIR and SERS – enable to study optical properties of Au- NPs and immobilized bio-molecules in context of a bio-nano-sensors.

Geostatistical Analysis and Mapping of Groundlevel Ozone in a Medium Sized Urban Area

Ground-level tropospheric ozone is one of the air pollutants of most concern. It is mainly produced by photochemical processes involving nitrogen oxides and volatile organic compounds in the lower parts of the atmosphere. Ozone levels become particularly high in regions close to high ozone precursor emissions and during summer, when stagnant meteorological conditions with high insolation and high temperatures are common. In this work, some results of a study about urban ozone distribution patterns in the city of Badajoz, which is the largest and most industrialized city in Extremadura region (southwest Spain) are shown. Fourteen sampling campaigns, at least one per month, were carried out to measure ambient air ozone concentrations, during periods that were selected according to favourable conditions to ozone production, using an automatic portable analyzer. Later, to evaluate the ozone distribution at the city, the measured ozone data were analyzed using geostatistical techniques. Thus, first, during the exploratory analysis of data, it was revealed that they were distributed normally, which is a desirable property for the subsequent stages of the geostatistical study. Secondly, during the structural analysis of data, theoretical spherical models provided the best fit for all monthly experimental variograms. The parameters of these variograms (sill, range and nugget) revealed that the maximum distance of spatial dependence is between 302-790 m and the variable, air ozone concentration, is not evenly distributed in reduced distances. Finally, predictive ozone maps were derived for all points of the experimental study area, by use of geostatistical algorithms (kriging). High prediction accuracy was obtained in all cases as cross-validation showed. Useful information for hazard assessment was also provided when probability maps, based on kriging interpolation and kriging standard deviation, were produced.

Phosphorus Supplementation of Ammoniated Rice Straw on Rumen Fermentability, Syntesised Microbial Protein and Degradabilityin Vitro

The effect of phosphorus supplementation of ammoniated rice straw was studied. The in vitro experiment was carried out following the first stage of Tilley and Terry method. The treatments consisting of four diets were A = 50% ammoniated rice straw + 50% concentrate (control), B = A + 0.2% Phosphor (P) supplement, C = A + 0.4% Phosphor (P) supplement, and D = A + 0.6% Phosphor (P) supplement of dry matter. Completely randomized design was used as the experimental design with differences among treatment means were examined using Duncan multiple range test. Variables measured were total bacterial and cellulolytic bacterial population, cellulolytic enzyme activity, ammonia (NH3) and volatile fatty acid (VFA) concentrations, as fermentability indicators and synthesized microbial protein, as well as degradability indicators including dry matter (DM), organic matter (OM), neutral detergent fibre (NDF), acid detergent fibre (ADF) and cellulose. The results indicated that fermentability and degradability of diets consisting ammoniated rice straw with P supplementation were significantly higher than the control diet (P< 0.05). It is concluded that P supplementation is important to improve fermentability and degradability of rations containing ammoniated RS and concentrate. In terms of the most effective level of P supplementation occurred at a supplementation rate of 0.4% of dry matter.

Qanat (Subterranean Canal) Role in Traditional Cities and Settlements Formation of Hot-Arid Regions of Iran

A passive system "Qanat" is collection of some underground wells. A mother-well was dug in a place far from the city where they could reach to the water table maybe 100 meters underground, they dug other wells to direct water toward the city, with minimum possible gradient. Using the slope of the earth they could bring water close to the surface in the city. The source of water or the appearance of Qanat, land slope and the ownership lines are the important and effective factors in the formation of routes and the segment division of lands to the extent that making use of Qanat as the techniques of extracting underground waters creates a channel of routes with an organic order and hierarchy coinciding the slope of land and it also guides the Qanat waters in the tradition texture of salt desert and border provinces of it. Qanats are excavated in a specified distinction from each other. The quantity of water provided by Qanats depends on the kind of land, distance from mountain, geographical situation of them and the rate of water supply from the underground land. The rate of underground waters, possibility of Qanat excavation, number of Qanats and rate of their water supply from one hand and the quantity of cultivable fertile lands from the other hand are the important natural factors making the size of cities. In the same manner the cities with several Qanats have multi central textures. The location of cities is in direct relation with land quality, soil fertility and possibility of using underground water by excavating Qanats. Observing the allowable distance for Qanat watering is a determining factor for distance between villages and cities. Topography, land slope, soil quality, watering system, ownership, kind of cultivation, etc. are the effective factors in directing Qanats for excavation and guiding water toward the cultivable lands and it also causes the formation of different textures in land division of farming provinces. Several divisions such as orderly and wide, inorderly, thin and long, comb like, etc. are the introduction to organic order. And at the same time they are complete coincidence with environmental conditions in the typical development of ecological architecture and planning in the traditional cities and settlements order.

Photo-Fenton Treatment of 1,3-dichloro-2- Propanol Aqueous Solutions Using UV Radiation and H2O2 – A Kinetic Study

The photochemical and photo-Fenton oxidation of 1,3-dichloro-2-propanol was performed in a batch reactor, at room temperature, using UV radiation, H2O2 as oxidant, and Fenton-s reagent. The effect of the oxidative agent-s initial concentration was investigated as well as the effect of the initial concentration of Fe(II) by following the target compound degradation, the total organic carbon removal and the chloride ion production. Also, from the kinetic analysis conducted and proposed reaction scheme it was deduced that the addition of Fe(II) significantly increases the production and the further oxidation of the chlorinated intermediates.

Increasing Chickpea Quality and Agroecosystm Sustainability Using Organic and Natural Resources

In order to increase in chickpea quality and agroecosystem sustainability, field experiments were carried out in 2007 and 2008 growing seasons. In this research the effects of different organic, chemical and biological fertilizers were investigated on grain yield and quality of chickpea. Experimental units were arranged in split-split plots based on randomized complete blocks with three replications. The highest amounts of yield and yield components were obtained in G1×N5 interaction. Significant increasing of N, P, K, Fe and Mg content in leaves and grains emphasized on superiority of mentioned treatment because each one of these nutrients has an approved role in chlorophyll synthesis and photosynthesis ability of the crop. The combined application of compost, farmyard manure and chemical phosphorus (N5) had the best grain quality due to high protein, starch and total sugar contents, low crude fiber and reduced cooking time.

Entrepreneurial Characteristics and Attitude of Pineapple Growers

Nagaland, the 16th state of India in order of statehood, is situated between 25° 6' and 27° 4' latitude north and between 93º 20' E and 95º 15' E longitude of equator in the North Eastern part of the India. Endowed with varied topography, soil and agro climatic conditions it is known for its potentiality to grow all most all kinds of horticultural crops. Pineapple being grown since long organically by default is one of the most promising crops of the state with emphasis being laid for commercialization by the government of Nagaland. In light of commercialization, globalization and scope of setting small-scale industries, a research study was undertaken to examine the socio-economic and personal characteristics, entrepreneurial characteristics and attitude of the pineapple growers towards improved package of practices of pineapple cultivation. The study was conducted in Medziphema block of Dimapur district of the Nagaland state of India following ex post facto research design. Ninety pineapple growers were selected from four different villages of Medziphema block based on proportionate random selection procedure. Findings of the study revealed that majority of the respondents had medium level of entrepreneurial characteristics in terms of knowledge level, risk orientation, self confidence, management orientation, farm decision making ability and leadership ability and most of them had favourable attitude towards improved package of practices of pineapple cultivation. The variables age, education, farm size, risk orientation, management orientation and sources of information utilized were found important to influence the attitude of the respondents. The study revealed that favourable attitude and entrepreneurial characteristics of the pineapple cultivators might be harnessed for increased production of pineapple in the state thereby bringing socio economic upliftment of the marginal and small-scale farmers.

Photo Catalytic Oxidation Degradation of Volatile Organic Compound with Nano-TiO2/LDPE Composite Film

The photocatalytic activity efficiency of TiO2 for the degradation of Toluene in photoreactor can be enhanced by nano- TiO2/LDPE composite film. Since the amount of TiO2 affected the efficiency of the photocatalytic activity, this work was mainly concentrated on the effort to embed the high amount of TiO2 in the Polyethylene matrix. The developed photocatalyst was characterized by XRD, UV-Vis spectrophotometer and SEM. The SEM images revealed the high homogeneity of the deposition of TiO2 on the polyethylene matrix. The XRD patterns interpreted that TiO2 embedded in the PE matrix exhibited mainly in anatase form. In addition, the photocatalytic results show that the toluene removal efficiencies of 30±5%, 49±4%, 68±5%, 42±6% and 33±5% were obtained when using the catalyst loading at 0%, 10%, 15%, 25% and 50% (wt. cat./wt. film), respectively.

Regulatory Effects of Carbon Sources on Tabtoxin Production (A β-lactam Phytotoxin of Pseudomonas syringae pv. tabaci)

The effects of divers carbon substrates were investigated for the tabtoxin production of an isolated pathogenic Pseudomonas syringae pv. tabaci, the causal agent of wildfire of tobacco and are discussed in relation to the bacterium growth. The isolated organism was grown in batch culture on Woolley's medium (28°C, 200 rpm, during 5 days). The growth has been measured by the optical density (OD) at 620 nm and the tabtoxin production quantified by Escherichia coli (K-12) bioassay technique. The growth and the tabtoxin production were both influenced by the substrates (sugars, amino acids, organic acids) used, each, as a sole carbon source and as a supplement for the same amino acids. The most significant quantities of tabtoxin were obtained in presence of some amino acids used as sole carbon source and/or as supplement.

Kinetics Studies on Biological Treatment of Tannery Wastewater Using Mixed Culture

In this study, aerobic digestion of tannery industry wastewater was carried out using mixed culture obtained from common effluent treatment plant treating tannery wastewater. The effect of pH, temperature, inoculum concentration, agitation speed and initial substrate concentration on the reduction of organic matters were found. The optimum conditions for COD reduction was found to be pH - 7 (60%), temperature - 30ÔùªC (61%), inoculum concentration - 2% (61%), agitation speed - 150rpm (65%) and initial substrate concentration - 1560 mg COD/L (74%). Kinetics studies were carried by using Monod model, First order, Diffusional model and Singh model. From the results it was found that the Monod model suits well for the degradation of tannery wastewater using mixed microbial consortium.

Polymerisation Shrinkage of Light−Cured Hydroxyapatite (HA)−Reinforced Dental Composites

The dental composites are preferably used as filling materials due to their esthetic appearances. Nevertheless one of the major problems, during the application of the dental composites, is shape change named as “polymerisation shrinkage" affecting clinical success of the dental restoration while photo-polymerisation. Polymerisation shrinkage of composites arises basically from the formation of a polymer due to the monomer transformation which composes of an organic matrix phase. It was sought, throughout this study, to detect and evaluate the structural polymerisation shrinkage of prepared dental composites in order to optimize the effects of various fillers included in hydroxyapatite (HA)-reinforced dental composites and hence to find a means to modify the properties of these dental composites prepared with defined parameters. As a result, the shrinkage values of the experimental dental composites were decreased by increasing the filler content of composites and the composition of different fillers used had effect on the shrinkage of the prepared composite systems.

Pollution Induced Structural and Physico-Chemical Changes in Algal Community: A Case Study of River Pandu of North India

The study area receives a wide variety of wastes generated by municipalities and the industries like paints and pigments, metal processing industries, thermal power plants electroprocessing industries etc. The Physico-chemical and structural investigation of water from river Pandu indicated high level of chlorides and calcium which made the water unsuitable for human use. Algae like Cyclotella fumida, Asterionella Formosa, Cladophora glomerata, Pediastrum simplex, Scenedesmus bijuga, Cladophora glomerata were the dominant pollution tolerant species recorded under these conditions. The sensitive and less abundant species of algae included Spirogyra sps., Merismopedia sps. The predominance colonies of Zygnema sps, Phormidium sps, Mycrocystis aeruginosa, Merismopedia minima, Pandorina morum, seems to correlate with high organic contents of Pandu river water. This study assumes significance as some algae can be used as bioindicators of water pollution and algal floral of a municipal drain carrying waste effluents from industrial area Kanpur and discharge them into the river Pandu flowing onto southern outskirts of Kanpur city.

Effect of Chloroform on Aerobic Biodegradation of Organic Solvents in Pharmaceutical Wastewater

In this study, cometabolic biodegradation of chloroform was experimented with mixed cultures in the presence of various organic solvents like methanol, ethanol, isopropanol, acetone, acetonitrile and toluene as these are predominant discharges in pharmaceutical industries. Toluene and acetone showed higher specific chloroform degradation rate when compared to other compounds. Cometabolic degradation of chloroform was further confirmed by observation of free chloride ions in the medium. An extended Haldane model, incorporating the inhibition due to chloroform and the competitive inhibition between primary substrates, was developed to predict the biodegradation of primary substrates, cometabolic degradation of chloroform and the biomass growth. The proposed model is based on the use of biokinetic parameters obtained from single substrate degradation studies. The model was able to satisfactorily predict the experimental results of ternary and quaternary mixtures. The proposed model can be used for predicting the performance of bioreactors treating discharges from pharmaceutical industries.