Effect of Chloroform on Aerobic Biodegradation of Organic Solvents in Pharmaceutical Wastewater

In this study, cometabolic biodegradation of chloroform was experimented with mixed cultures in the presence of various organic solvents like methanol, ethanol, isopropanol, acetone, acetonitrile and toluene as these are predominant discharges in pharmaceutical industries. Toluene and acetone showed higher specific chloroform degradation rate when compared to other compounds. Cometabolic degradation of chloroform was further confirmed by observation of free chloride ions in the medium. An extended Haldane model, incorporating the inhibition due to chloroform and the competitive inhibition between primary substrates, was developed to predict the biodegradation of primary substrates, cometabolic degradation of chloroform and the biomass growth. The proposed model is based on the use of biokinetic parameters obtained from single substrate degradation studies. The model was able to satisfactorily predict the experimental results of ternary and quaternary mixtures. The proposed model can be used for predicting the performance of bioreactors treating discharges from pharmaceutical industries.




References:
[1] B.C. Inanc, K. Alp, F. Ciner, B. Mertoglu, I. Ozturk, "Toxicity
assessment on combined biological treatment of pharmaceutical
industrial effluents", Water Sci. Technol. vol. 45, pp.135-142, 2002.
[2] A.M. Enright, S. McHugh, G. Collins, V.O. Flaherty, "Low-temperature
anaerobic biological treatment of solvent containing pharmaceutical
wastewater", Water Res. vol. 39, pp. 4587-4596, 2005.
[3] D.J.C. Constable, C.J. Gonzalez, R.K. Henderson, "Perspective on
solvent use in the pharmaceutical industry", Org Process Res. Dev.
vol.11, pp. 133-137, 2007.
[4] M.H.A. van Eekert, A.J.M. Stams, J.A. Field, G. Schraa, "Gratuitous
dechlorination of chloroethanes by methanogenic granular sludge",
Appl. Microbiol. Biotechnol. vol. 51, pp. 46-52, 1999.
[5] P.J.M. Middeldorp, M.L.G.C. Luijten, B.A. van de Pas, M.H.A. van
Eekert, S.W.M. Kengen, G. Schraa, A.J.M. Stams, "Anaerobic
microbial reductive dehalogenation of chlorinated ethenes", Biorem. J.
vol. 3, pp. 151-169, 1999.
[6] S.W. Zou, H.D. Stensel, J.F. Ferguson, "Carbon tetrachloride
degradation: Effect of microbial growth substrate and vitamin B-12
content", Environ. Sci. Technol. vol. 34, pp. 1751-1757, 2000.
[7] B.W. Koons, J.L. Baeseman, P.J. Novak, "Investigation of cell exudates
active in carbon tetrachloride and chloroform degradation", Biotechnol.
Bioeng. vol. 74, pp. 12-17, 2001.
[8] A.N. Assaf, K.Y. Lin, "Carbon tetrachloride reduction by Fe2+, S2, and
FeS with vitamin B-12 as organic amendment", J. Environ. Eng.-ASCE
vol. 128, pp. 94-99, 2002.
[9] P.M. Bradley, "History and ecology of chloroethene biodegradation: A
review", Biorem. J. vol.7, pp. 81-109, 2003.
[10] G. Chen, "Reductive dehalogenation of tetrachloroethylene by
microorganisms: Current knowledge and application strategies", Appl.
Microbiol. Biotechnol. vol. 63, pp. 373-377, 2004.
[11] M. Raynal, B. Crimi, A. Pruden, "Enrichment and characterization of
MTBE-degrading cultures under iron and sulfate reducing conditions",
Can. J. Civ. Eng. vol.37, pp. 522-534, 2010.
[12] Y. Morono, H. Unno, K. Hori, "Correlation of TCE cometabolism with
growth characteristics on aromatic substrates in toluene degrading
bacteria", Biochem. Eng. J. vol. 31, pp.173-179, 2006.
[13] B.G. Fox, J.G. Borneman, L.P. Wackett, J.D. Lipscomb, "Haloalkene
oxidation by the soluble methane monooxygenase from Methylosinus
trichosporium OB3b: mechanistic and environmental implications",
Biochem. J. vol. 29, pp. 6419-6427, 1990.
[14] D. Ryoo, H. Shim, K. Canada, P. Barbieri, T.K. Wood, "Aerobic
degradation of Tetrachloroethylene by toluene-o-xylene monooxygenase
of Pseudomonas stutzeri OX1", Nat. Biotechnol. vol.18, pp. 775-778,
2000.
[15] T. Vannelli, M. Logan, D.M. Arciero, A.B. Hopper, "Degradation of
halogenated aliphatic compounds by the ammonia oxidizing bacterium
Nitrosomonas europaea", Appl. Environ. Microbiol. vol. 56, pp. 1169-
1171, 1990.
[16] M.E. Rasche, M.R. Hyman, D.J. Arp, "Factors limiting aliphatic
chlorocarbon degradation by Nitrosomonas europaea cometabolic
inactivation of ammonia monooxygenase and substrate specificity",
Appl. Environ. Microbiol. vol. 57, pp. 2986-2994, 1991.
[17] K. Mcclay, B.G. Fox, R.J. Steffan, "Chloroform mineralization by
toluene oxidizing bacteria", Appl. Environ. Microbiol. vol. 62, pp. 2716-
2722, 1996.
[18] H.L. Chang, L. Alvarez-Cohen, "Biodegradation of individual and
multiple chlorinated aliphatic hydrocarbons by methane oxidizing
cultures", Appl. Environ. Microbiol. vol. 62, pp. 3371-3377, 1996.
[19] R.L. Ely, K.J. Williamson, M.R. Hyman, D.J. Arp, "Cometabolism of
chlorinated solvents by nitrifying bacteria: Kinetics, substrate
interactions, toxicity effects and bacterial response", Biotechnol. Bioeng.
vol. 54, pp. 520-534, 1997.
[20] N. Hamamura, C. Page, T. Long, L. Semprini, D.J. Arp, "Chloroform
cometabolism by butane grown CF8, Pseudomonas butanovora,
Mycobacterium vaccae JOB5 and methane grown Methylosinus
trichosporium OB3b", Appl. Environ. Microbiol. vol. 63, pp. 3607-
3613, 1997.
[21] C.E. Aziz, G. Georgiu, G.E. Speitel Jr., "Cometabolism of chlorinated
solvents and binary chlorinated solvent mixtures using M. trichosporium
OB3b PP358", Biotech. Bioeng. vol. 65, pp. 100-107, 1999.
[22] D. Frascari, A. Zannoni, S. Fedi, Y. Pii, D. Zannoni, D. Pinelli, M.
Nocentini, "Aerobic cometabolism of chloroform by butane grown
microorganisms: Long term monitoring of depletion rates and isolation
of a high performing strain", Biodegradation. vol. 16, pp. 147-158,
2005.
[23] L. Alvarez-Cohen, P.L. McCarty, "Product toxicity and cometabolic
competitive inhibition modeling of chloroform and trichloroethylene
transformation by methanotrophic resting cells". Appl. Environ.
Microbiol. vol. 57, pp. 1031-1037, 1991.
[24] E.W. Bartnicki, C.E. Castro, "Biodehalogenation - Rapid oxidative
metabolism of monohalomethanes and polyhalomethanes by
Methylosinus trichosporium OB3b", Environ. Toxicol. Chem. vol. 13,
pp. 241-245, 1994.
[25] D.J. Jahng, T.K. Wood, "Trichloroethylene and chloroform degradation
by a Methylosinus trichosporium OB3b", Appl. Environ. Microbiol. vol.
60, pp. 2473-2482, 1994.
[26] J.B. Rogers, N.M. DuTeau, K.F. Reardon, "Use of 16S-rRNA to
investigate microbial population dynamics during biodegradation of
toluene and phenol by a binary culture", Biotechnol. Bioeng. vol. 70, pp.
436-445, 2000.
[27] A. Bielefeldt, H.D. Stensel, "Modeling competitive inhibition effects
during biodegradation of BTEX mixtures", Water Res. vol. 33, pp. 707-
714, 1999.
[28] X.H. Zhang, R.K. Bajpai, "A comprehensive model for the
cometabolism of chlorinated solvents", J. Environ. Sci. Health. Part A.
vol. 35, pp. 229-244, 2000.
[29] B.W. Brandt, I.M.M. van Leeuwen, S.A.L.M. Kooijman, "A general
model for multiple substrate biodegradation. Application to
cometabolism of structurally non-analogous compounds", Water Res.
vol. 37, pp. 4843-4854, 2003.
[30] J.P. Dikshit, A.K. Suresh, K.V. Venkatesh, "An optimal model for
representing the kinetics of growth and product formation by
Lactobacillus rhamnosus on multiple substrates", J. Biosci. Bioeng. vol.
96, pp. 481-486, 2003.
[31] L.A. Cohen, G.E. Speitel, "Kinetics of aerobic cometabolism of
chlorinated solvents", Biodegradation. vol. 12, pp. 105-126, 2001.
[32] J.A. Field, R.S. Alvarez, "Biodegradability of chlorinated solvents and
related chlorinated aliphatic compounds", Rev. Environ. Sci. Biotechnol.
vol. 3, pp. 185-254, 2004.
[33] J. Kim, W.B. Lee, "The development of a prediction model for the
kinetic constant of chlorinated aliphatic hydrocarbons", Environ. Model.
Assess. vol. 14, pp. 93-100, 2009.
[34] M.R. Atlas, "Handbook of Media for environmental microbiology",
Second edition, CRC Press, 1995.
[35] K. Ramakrishna, L. Philip, "Biodegradation of mixed pesticides by
mixed pesticide enriched cultures". J. Environ. Sci. Health., Part B. vol.
44, pp. 18-30, 2009.
[36] J.F. Haldane (Andrews), "A mathematical model for the continuous
culture of microorganisms utilizing inhibitory substance". Biotechnol.
Bioeng. vol. 10, 707-723, 1968.
[37] P. Balasubramanian, L. Philip, B.S. Murty, "Biodegradation of
chlorinated and non-chlorinated VOCs from pharmaceutical industries",
Appl. Biochem. Biotechnol. vol. 163, 497-518, 2010.
[38] S. Guha, C. Peters, P. Jaffe, "Multisubstrate biodegradation kinetics of
naphthalene, phenanthrene, and pyrene mixtures". Biotechnol. Bioeng.
vol. 65, pp. 491-499, 1999.
[39] C.D. Knightes, C.A. Peters, Multisubstrate biodegradation kinetics for
binary and complex mixtures of polycyclic aromatic hydrocarbons.
Environ. Toxicol. Chem. vol. 25, pp. 1746-1756, 2006.