Photocatalytic Oxidation of Gaseous Formaldehyde Using the TiO2 Coated SF Filter

The research work covered in this study includes the morphological structure and optical properties of TiO2-coated silk fibroin (SF) filters at 2.5% wt. TiO2/vol. PVA solution. SEM micrographs revealed the fibrous morphology of the TiO2-coated SF filters. An average diameter of the SF fiber was estimated to be approximately 10µm. Also, it was confirmed that TiO2 can be adhered more on SF filter surface at higher TiO2 dosages. The activity of semiconductor materials was studied by UV-VIS spectrophotometer method. The spectral data recorded shows the strong cut off at 390 nm. The calculated band-gap energy was about 3.19 eV. The photocatalytic activity of the filter was tested for gaseous formaldehyde removal in a modeling room with the total volume of 2.66 m3. The highest removal efficiency (54.72 ± 1.75%) was obtained at the initial formaldehyde concentration of about 5.00 ± 0.50ppm.

Synthesis of Silk Fibroin Fiber for Indoor air Particulate Removal

The main objective of this research is to synthesize silk fibroin fiber for indoor air particulate removal. Silk cocoons were de-gummed using 0.5 wt % Na2CO3 alkaline solutions at 90 Ó╣ìC for 60 mins, washed with distilled water, and dried at 80 Ó╣ìC for 3 hrs in a vacuum oven. Two sets of experiment were conducted to investigate the impacts of initial particulate matter (PM) concentration and that of air flow rate on the removal efficiency. Rice bran collected from a local rice mill in Ubonratchathani province was used as indoor air contaminant in this work. The morphology and physical properties of silk fibroin (SF) fiber were measured. The SEM revealed the deposition of PM on the used fiber. The PM removal efficiencies of 72.29 ± 3.03 % and 39.33 ± 1.99 % were obtained of PM10 and PM2.5, respectively, when using the initial PM concentration at 0.040 mg/m3 and 0.020 mg/m3 of PM10 and PM2.5, respectively, with the air flow rate of 5 L/min.

Photo Catalytic Oxidation Degradation of Volatile Organic Compound with Nano-TiO2/LDPE Composite Film

The photocatalytic activity efficiency of TiO2 for the degradation of Toluene in photoreactor can be enhanced by nano- TiO2/LDPE composite film. Since the amount of TiO2 affected the efficiency of the photocatalytic activity, this work was mainly concentrated on the effort to embed the high amount of TiO2 in the Polyethylene matrix. The developed photocatalyst was characterized by XRD, UV-Vis spectrophotometer and SEM. The SEM images revealed the high homogeneity of the deposition of TiO2 on the polyethylene matrix. The XRD patterns interpreted that TiO2 embedded in the PE matrix exhibited mainly in anatase form. In addition, the photocatalytic results show that the toluene removal efficiencies of 30±5%, 49±4%, 68±5%, 42±6% and 33±5% were obtained when using the catalyst loading at 0%, 10%, 15%, 25% and 50% (wt. cat./wt. film), respectively.