New Proxy Signatures Preserving Privacy and as Secure as ElGamal Signatures

Digital signature is a useful primitive to attain the integrity and authenticity in various wire or wireless communications. Proxy signature is one type of the digital signatures. It helps the proxy signer to sign messages on behalf of the original signer. It is very useful when the original signer (e.g. the president of a company) is not available to sign a specific document. If the original signer can not forge valid proxy signatures through impersonating the proxy signer, it will be robust in a virtual environment; thus the original signer can not shift any illegal action initiated by herself to the proxy signer. In this paper, we propose a new proxy signature scheme. The new scheme can prevent the original signer from impersonating the proxy signer to sign messages. The proposed scheme is based on the regular ElGamal signature. In addition, the fair privacy of the proxy signer is maintained. That means, the privacy of the proxy signer is preserved; and the privacy can be revealed when it is necessary.

A Generator from Cascade Markov Model for Packet Loss and Subsequent Bit Error Description

In this paper we present a novel error model for packet loss and subsequent error description. The proposed model simulates the error performance of wireless communication link. The model is designed as two independent Markov chains, where the first one is used for packet generation and the second one generates correctly and incorrectly transmitted bits for received packets from the first chain. The statistical analyses of real communication on the wireless link are used for determination of model-s parameters. Using the obtained parameters and the implementation of the generator, we collected generated traffic. The obtained results generated by proposed model are compared with the real data collection.

A Novel Neighborhood Defined Feature Selection on Phase Congruency Images for Recognition of Faces with Extreme Variations

A novel feature selection strategy to improve the recognition accuracy on the faces that are affected due to nonuniform illumination, partial occlusions and varying expressions is proposed in this paper. This technique is applicable especially in scenarios where the possibility of obtaining a reliable intra-class probability distribution is minimal due to fewer numbers of training samples. Phase congruency features in an image are defined as the points where the Fourier components of that image are maximally inphase. These features are invariant to brightness and contrast of the image under consideration. This property allows to achieve the goal of lighting invariant face recognition. Phase congruency maps of the training samples are generated and a novel modular feature selection strategy is implemented. Smaller sub regions from a predefined neighborhood within the phase congruency images of the training samples are merged to obtain a large set of features. These features are arranged in the order of increasing distance between the sub regions involved in merging. The assumption behind the proposed implementation of the region merging and arrangement strategy is that, local dependencies among the pixels are more important than global dependencies. The obtained feature sets are then arranged in the decreasing order of discriminating capability using a criterion function, which is the ratio of the between class variance to the within class variance of the sample set, in the PCA domain. The results indicate high improvement in the classification performance compared to baseline algorithms.

Floating-Point Scaling for BSS Gain Control

In Blind Source Separation (BSS) processing, taking advantage of scaling factor indetermination and based on the floatingpoint representation, we propose a scaling technique applied to the separation matrix, to avoid the saturation or the weakness in the recovered source signals. This technique performs an Automatic Gain Control (AGC) in an on-line BSS environment. We demonstrate the effectiveness of this technique by using the implementation of a division free BSS algorithm with two input, two output. This technique is computationally cheaper and efficient for a hardware implementation.

An Image Encryption Method with Magnitude and Phase Manipulation using Carrier Images

We describe an effective method for image encryption which employs magnitude and phase manipulation using carrier images. Although it involves traditional methods like magnitude and phase encryptions, the novelty of this work lies in deploying the concept of carrier images for encryption purpose. To this end, a carrier image is randomly chosen from a set of stored images. One dimensional (1-D) discrete Fourier transform (DFT) is then carried out on the original image to be encrypted along with the carrier image. Row wise spectral addition and scaling is performed between the magnitude spectra of the original and carrier images by randomly selecting the rows. Similarly, row wise phase addition and scaling is performed between the original and carrier images phase spectra by randomly selecting the rows. The encrypted image obtained by these two operations is further subjected to one more level of magnitude and phase manipulation using another randomly chosen carrier image by 1-D DFT along the columns. The resulting encrypted image is found to be fully distorted, resulting in increasing the robustness of the proposed work. Further, applying the reverse process at the receiver, the decrypted image is found to be distortionless.

Proposed a Method for Increasing the Delivery Performance in Dynamic Supply Network

Supply network management adopts a systematic and integrative approach to managing the operations and relationships of various parties in a supply network. The objective of the manufactures in their supply network is to reduce inventory costs and increase customer satisfaction levels. One way of doing that is to synchronize delivery performance. A supply network can be described by nodes representing the companies and the links (relationships) between these nodes. Uncertainty in delivery time depends on type of network relationship between suppliers. The problem is to understand how the individual uncertainties influence the total uncertainty of the network and identify those parts of the network, which has the highest potential for improving the total delivery time uncertainty.

Improved Feature Processing for Iris Biometric Authentication System

Iris-based biometric authentication is gaining importance in recent times. Iris biometric processing however, is a complex process and computationally very expensive. In the overall processing of iris biometric in an iris-based biometric authentication system, feature processing is an important task. In feature processing, we extract iris features, which are ultimately used in matching. Since there is a large number of iris features and computational time increases as the number of features increases, it is therefore a challenge to develop an iris processing system with as few as possible number of features and at the same time without compromising the correctness. In this paper, we address this issue and present an approach to feature extraction and feature matching process. We apply Daubechies D4 wavelet with 4 levels to extract features from iris images. These features are encoded with 2 bits by quantizing into 4 quantization levels. With our proposed approach it is possible to represent an iris template with only 304 bits, whereas existing approaches require as many as 1024 bits. In addition, we assign different weights to different iris region to compare two iris templates which significantly increases the accuracy. Further, we match the iris template based on a weighted similarity measure. Experimental results on several iris databases substantiate the efficacy of our approach.

A New Fast Skin Color Detection Technique

Skin color can provide a useful and robust cue for human-related image analysis, such as face detection, pornographic image filtering, hand detection and tracking, people retrieval in databases and Internet, etc. The major problem of such kinds of skin color detection algorithms is that it is time consuming and hence cannot be applied to a real time system. To overcome this problem, we introduce a new fast technique for skin detection which can be applied in a real time system. In this technique, instead of testing each image pixel to label it as skin or non-skin (as in classic techniques), we skip a set of pixels. The reason of the skipping process is the high probability that neighbors of the skin color pixels are also skin pixels, especially in adult images and vise versa. The proposed method can rapidly detect skin and non-skin color pixels, which in turn dramatically reduce the CPU time required for the protection process. Since many fast detection techniques are based on image resizing, we apply our proposed pixel skipping technique with image resizing to obtain better results. The performance evaluation of the proposed skipping and hybrid techniques in terms of the measured CPU time is presented. Experimental results demonstrate that the proposed methods achieve better result than the relevant classic method.

A Weighted-Profiling Using an Ontology Basefor Semantic-Based Search

The information on the Web increases tremendously. A number of search engines have been developed for searching Web information and retrieving relevant documents that satisfy the inquirers needs. Search engines provide inquirers irrelevant documents among search results, since the search is text-based rather than semantic-based. Information retrieval research area has presented a number of approaches and methodologies such as profiling, feedback, query modification, human-computer interaction, etc for improving search results. Moreover, information retrieval has employed artificial intelligence techniques and strategies such as machine learning heuristics, tuning mechanisms, user and system vocabularies, logical theory, etc for capturing user's preferences and using them for guiding the search based on the semantic analysis rather than syntactic analysis. Although a valuable improvement has been recorded on search results, the survey has shown that still search engines users are not really satisfied with their search results. Using ontologies for semantic-based searching is likely the key solution. Adopting profiling approach and using ontology base characteristics, this work proposes a strategy for finding the exact meaning of the query terms in order to retrieve relevant information according to user needs. The evaluation of conducted experiments has shown the effectiveness of the suggested methodology and conclusion is presented.

Toward an Open Network Business Approach

The aim of this paper is to propose a dynamic integrated approach, based on modularity concept and on the business ecosystem approach, that exploit different eBusiness services for SMEs under an open business network platform. The adoption of this approach enables firms to collaborate locally for delivering the best product/service to the customers as well as globally by accessing international markets, interrelate directly with the customers, create relationships and collaborate with worldwide actors. The paper will be structured as following: We will start by offering an overview of the state of the art of eBusiness platforms among SME of food and tourism firms and then we discuss the main drawbacks that characterize them. The digital business ecosystem approach and the modularity concept will be described as the theoretical ground in which our proposed integrated model is rooted. Finally, the proposed model along with a discussion of the main value creation potentialities it might create for SMEs will be presented.

A New Nonlinear Excitation Controller for Transient Stability Enhancement in Power Systems

The very nonlinear nature of the generator and system behaviour following a severe disturbance precludes the use of classical linear control technique. In this paper, a new approach of nonlinear control is proposed for transient and steady state stability analysis of a synchronous generator. The control law of the generator excitation is derived from the basis of Lyapunov stability criterion. The overall stability of the system is shown using Lyapunov technique. The application of the proposed controller to simulated generator excitation control under a large sudden fault and wide range of operating conditions demonstrates that the new control strategy is superior to conventional automatic voltage regulator (AVR), and show very promising results.

An Innovative Fuzzy Decision Making Based Genetic Algorithm

Several researchers have proposed methods about combination of Genetic Algorithm (GA) and Fuzzy Logic (the use of GA to obtain fuzzy rules and application of fuzzy logic in optimization of GA). In this paper, we suggest a new method in which fuzzy decision making is used to improve the performance of genetic algorithm. In the suggested method, we determine the alleles that enhance the fitness of chromosomes and try to insert them to the next generation. In this algorithm we try to present an innovative vaccination in the process of reproduction in genetic algorithm, with considering the trade off between exploration and exploitation.

Graphical Approach for Targeting Work Exchange Networks

Depressurization and pressurization streams in industrial systems constitute a work exchange network (WEN). In this paper, a novel graphical approach for targeting energy conservation potential of a WEN is proposed. Through constructing the composite work curves in the pressure-work diagram and assuming all of the mechanical energy of the depressurization streams is recovered by expanders, the maximum work target of a WEN can be determined via the proposed targeting steps. A WEN in an ammonia production process is used as a case study to illustrate the applicability of the proposed graphical approach.

Three-Phase High Frequency AC Conversion Circuit with Dual Mode PWM/PDM Control Strategy for High Power IH Applications

This paper presents a novel three-phase utility frequency to high frequency soft switching power conversion circuit with dual mode pulse width modulation and pulse density modulation for high power induction heating applications as melting of steel and non ferrous metals, annealing of metals, surface hardening of steel and cast iron work pieces and hot water producers, steamers and super heated steamers. This high frequency power conversion circuit can operate from three-phase systems to produce high current for high power induction heating applications under the principles of ZVS and it can regulate its ac output power from the rated value to a low power level. A dual mode modulation control scheme based on high frequency PWM in synchronization with the utility frequency positive and negative half cycles for the proposed high frequency conversion circuit and utility frequency pulse density modulation is produced to extend its soft switching operating range for wide ac output power regulation. A dual packs heat exchanger assembly is designed to be used in consumer and industrial fluid pipeline systems and it is proved to be suitable for the hot water, steam and super heated steam producers. Experiment and simulation results are given in this paper to verify the operation principles of the proposed ac conversion circuit and to evaluate its power regulation and conversion efficiency. Also, the paper presents a mutual coupling model of the induction heating load instead of equivalent transformer circuit model.

External Effects on Dynamic Competitive Model of Domestic Airline and High Speed Rail

Social-economic variables influence transportation demand largely. Analyses of discrete choice model consider social-economic variables to study traveler-s mode choice and demand. However, to calibrate the discrete choice model needs to have plenty of questionnaire survey. Also, an aggregative model is proposed. The historical data of passenger volumes for high speed rail and domestic civil aviation are employed to calibrate and validate the model. In this study, models with different social-economic variables, which are oil price, GDP per capita, CPI and economic growth rate, are compared. From the results, the model with the oil price is better than models with the other social-economic variables.

MinRoot and CMesh: Interconnection Architectures for Network-on-Chip Systems

The success of an electronic system in a System-on- Chip is highly dependent on the efficiency of its interconnection network, which is constructed from routers and channels (the routers move data across the channels between nodes). Since neither classical bus based nor point to point architectures can provide scalable solutions and satisfy the tight power and performance requirements of future applications, the Network-on-Chip (NoC) approach has recently been proposed as a promising solution. Indeed, in contrast to the traditional solutions, the NoC approach can provide large bandwidth with moderate area overhead. The selected topology of the components interconnects plays prime rule in the performance of NoC architecture as well as routing and switching techniques that can be used. In this paper, we present two generic NoC architectures that can be customized to the specific communication needs of an application in order to reduce the area with minimal degradation of the latency of the system. An experimental study is performed to compare these structures with basic NoC topologies represented by 2D mesh, Butterfly-Fat Tree (BFT) and SPIN. It is shown that Cluster mesh (CMesh) and MinRoot schemes achieves significant improvements in network latency and energy consumption with only negligible area overhead and complexity over existing architectures. In fact, in the case of basic NoC topologies, CMesh and MinRoot schemes provides substantial savings in area as well, because they requires fewer routers. The simulation results show that CMesh and MinRoot networks outperforms MESH, BFT and SPIN in main performance metrics.

Optimal Estimation of Supporting-Ground Orientation for Multi-Segment Body Based on Otolith-Canal Fusion

This article discusses the problem of estimating the orientation of inclined ground on which a human subject stands based on information provided by the vestibular system consisting of the otolith and semicircular canals. It is assumed that body segments are not necessarily aligned and thus forming an open kinematic chain. The semicircular canals analogues to a technical gyrometer provide a measure of the angular velocity whereas the otolith analogues to a technical accelerometer provide a measure of the translational acceleration. Two solutions are proposed and discussed. The first is based on a stand-alone Kalman filter that optimally fuses the two measurements based on their dynamic characteristics and their noise properties. In this case, no body dynamic model is needed. In the second solution, a central extended disturbance observer that incorporates a body dynamic model (internal model) is employed. The merits of both solutions are discussed and demonstrated by experimental and simulation results.

Data Embedding Based on Better Use of Bits in Image Pixels

In this study, a novel approach of image embedding is introduced. The proposed method consists of three main steps. First, the edge of the image is detected using Sobel mask filters. Second, the least significant bit LSB of each pixel is used. Finally, a gray level connectivity is applied using a fuzzy approach and the ASCII code is used for information hiding. The prior bit of the LSB represents the edged image after gray level connectivity, and the remaining six bits represent the original image with very little difference in contrast. The proposed method embeds three images in one image and includes, as a special case of data embedding, information hiding, identifying and authenticating text embedded within the digital images. Image embedding method is considered to be one of the good compression methods, in terms of reserving memory space. Moreover, information hiding within digital image can be used for security information transfer. The creation and extraction of three embedded images, and hiding text information is discussed and illustrated, in the following sections.

QSI Dynamical Fetch Policy for SMT

A Simultaneous Multithreading (SMT) Processor is capable of executing instructions from multiple threads in the same cycle. SMT in fact was introduced as a powerful architecture to superscalar to increase the throughput of the processor. Simultaneous Multithreading is a technique that permits multiple instructions from multiple independent applications or threads to compete limited resources each cycle. While the fetch unit has been identified as one of the major bottlenecks of SMT architecture, several fetch schemes were proposed by prior works to enhance the fetching efficiency and overall performance. In this paper, we propose a novel fetch policy called queue situation identifier (QSI) which counts some kind of long latency instructions of each thread each cycle then properly selects which threads to fetch next cycle. Simulation results show that in best case our fetch policy can achieve 30% on speedup and also can reduce the data cache level 1 miss rate.

Optimization of a Three-Term Backpropagation Algorithm Used for Neural Network Learning

The back-propagation algorithm calculates the weight changes of an artificial neural network, and a two-term algorithm with a dynamically optimal learning rate and a momentum factor is commonly used. Recently the addition of an extra term, called a proportional factor (PF), to the two-term BP algorithm was proposed. The third term increases the speed of the BP algorithm. However, the PF term also reduces the convergence of the BP algorithm, and optimization approaches for evaluating the learning parameters are required to facilitate the application of the three terms BP algorithm. This paper considers the optimization of the new back-propagation algorithm by using derivative information. A family of approaches exploiting the derivatives with respect to the learning rate, momentum factor and proportional factor is presented. These autonomously compute the derivatives in the weight space, by using information gathered from the forward and backward procedures. The three-term BP algorithm and the optimization approaches are evaluated using the benchmark XOR problem.